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One aim of data analysis is its condensation, namely capturing its gist in an apposite
way. This paper addresses the problem of constructing and assessing such
condensations without reference to mechanisms which might have generated the
data. The results obtained lead to non-probabilistic interpretations of some well-
known inferential procedures of classical statistics and thereby shed new light on the
structure of statistical inference and the theory of probability.

1. Introduction

Condensation of data is the suppression of its complex fine detail in favour of a
simplified summarizing description. For our purposes an N-ary data-set is a finite
ordered list D = x,,%,,..., %y of not necessarily distinct readings; one for each of N
cases, x,, being the reading for case n. Readings are elements of a possibly infinite set
R which has a context-dependent structure, typically they are finite real vectors. The
frequency function of the data-set D is the function #}, on R for which F,(z) is the
number of times x in R occurs in the list defining D. The data support S, is the set of
distinct readings in D; it is also the support of F},, namely the set of x in R at which
Fp(x) is not 0. For brevity we call #, the spectrum of D; it sums to N, the arity of D.
The normalization of F}, is the function f;, on R with f(x) = N7* Fp(), it is called the
density of D; it has the same support as F,.

Let R, be the set of N-ary data-sets, let B, be the union of the R, for N > 1 and
let M be a non-empty set. A function §: R, M is called a condensing statistic. It
condenses data D to §(D) in M and this condensation can be used to describe D. An
important condensing statistic is the function 4, whose value 8, (D) at D in R, is its
spectrum F},. This condensing statistic leads to the familiar description of data by its
frequency distribution when we are not concerned with which cases exhibit which
readings. It suppresses the linkage between the readings and the cases from which
they originate. We then specify data-sets only up to the equivalence determined by
equality of distribution and do not distinguish between data-sets with the same
spectrum. We call this the standard context because we use it as a benchmark when,
more generally, we condense data to a possibly vector-valued function

3(D) = A(Fy) (1.1)
of its spectrum. Situations in which this type of condensation is used will be called

Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 3

macrostandard contexts; in them, we specify data-sets only up to equality of
condensation and, for the purposes of the enquiry then at hand, we do not distinguish
between data-sets with the same condensation.

When we condense data 4 to 4(F,) we record that it is one of the data-sets D with
A(Fp) = A(F,). One who knows only that condensation cannot point to which of
those data-sets is the actual data-set, because they all have the same condensation.
Similarly one cannot, in general, recover ¥, from the condensation 4(#,). Although
F, could be recovered by returning to 4 itself, to do so would negate the point of its
suppression, namely the replacement of the intangible complexity of ¥, by something
simple and tangible. In these circumstances it is fruitful to talk about the
macrostandard context as if it were a standard one with a known spectrum. To do
s0 we use a surrogate spectrum #, in place of the suppressed actual spectrum ¥, and
talk about the macrostandard context as if it were a standard one with spectrum
F,. Expressions involving ¥, are then replaced by the ones obtained from them by
substituting F, for ¥,. More familiar terms for such substitutions are estimation,
approximation and their cognates; but these involve connotations of proximity to
actuality which we wish to separate from surrogation per se, namely the idea of using
a stand-in apart from the question of how well it plays that role, and our use of the
neutral term ‘surrogate’ emphasizes this. By definition, a surrogate spectrum is a
non-negative function on R with finite support, its normalization is the associated
surrogate density.

In what follows we examine grounds for preferring certain types of surrogate
spectra and develop a procedure which leads to a unique surrogate spectrum for use
in a given macrostandard context. It turns out that this procedure is similar to ML-
estimation and this fact leads to purely descriptive interpretations of some well-
known inferential procedures which are commonly seen as taking their meaning from
stochastic models for generating data. To avoid full generality at the outset, we first
develop our argument in special projective contexts for which relatively few general
concepts are required.

We consider only macrostandard contexts, namely data condensations of the form
(1.1). This rules out situations in which the case-order in the data-set is contextually
important, for instance when cases are epochs and the data-set is an individual time
series. On the other hand we do have a macrostandard context when each reading is
an individual time series and we are not concerned with which case is linked to which
series, in other words when we have a finite ensemble of time series.

2. Macrolevels and their representation

Let 8 be a condensing statistic. The equivalence relation p for which D’p D” when
oD’) = &(D”) is said to be the macrolevel determined by d. The p-equivalence class
containing D is denoted by p(D) and called the D-macrodatum. Many different
condensing statistics determine the same macrolevel and each of them is said to
represent it. A statistic which represents p has the form (D) = W{p(D)}, where W is
a one-to-one function on p-classes; we say that §(D) is the name of p(D) in the 4-
representation. The macrolevel of the standard context is the symmetry relation o
on R, for which D’cD” means that D’ and D” are permutations of each other. The
macrolevels of the macrostandard contexts are the equivalences p on R, which
contain the symmetry . A macrostandard context with macrolevel p is called a
p-context.

Phil, Trans. R. Soc. Lond, A (1991)
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4 P.D. Finch

In practice there are often contextual constraints which rule out some data-sets.
We suppose that these are constraints on data spectra that restrict discussion to the
data-sets in a specified subset € of B, which is such that two data-sets with the same
spectrum are either both in % or both not in €. We treat the constraint set € as part
of the data condensation by replacing & of (1.1) with §* given by

0*(D) = {8(D), I(Fp)},

where [ is the indicator function of the set {F,: De%}. We call 6* the contextual
version of § and the macrolevel it determines is called the contextual macrolevel. In
what follows it is taken as understood that the condensing statistic is the contextual
one when there are constraints.

A context defined in terms of a suggested condensing statistic, a proposed set of
readings £ and a given constraint set ¥ sometimes turns out to be the standard
context. This occurs when the function 4 of (1.1) is invertible on the constrained set
of spectra so that ¥y, = 4748(D)} is then recoverable from its condensation. Such a
context is said to be identifiable.

For simplicity it is convenient to suppose that we know the support S, of the
suppressed spectrum F,. There is no loss of generality in this supposition because we
can partition R, into disjoint cells each of which consists of all the data-sets with a
corresponding particular common finite support and then consider each cell
separately. When S, is not in fact known it may be regarded as a generic support
corresponding to a cell of R,. We also suppose that the surrogate spectra #, which
are under consideration as possible stand-ins for #, all have the same support as
F,. In what follows, therefore, we consider an arbitrary macrostandard context with
a known finite support § which is the common support of all the data-sets, spectra
and surrogate spectra under consideration. The set of all data-sets with support S is
denoted by &, # is the corresponding set of spectra and 4 o # is the set of surrogate
spectra with support S. The size of S is denoted by V and ¥~ is the V-dimensional
vector space of real functions on S equipped with the euclidean metric and
orthogonality relation L based on the inner product

(a,b) = 3 a() b(x). (2.1)
N

A real function on R with support S can be regarded as an element of ¥~ by
identifying it with its restriction to S. In this way all the spectra and surrogate
spectra in ¥, together with their densities, can be regarded as elements of ¥~ and,
since they are everywhere positive on S, their logarithms are also in ¥". Conversely
a vector ¢ in ¥~ which is not zero anywhere on S can be regarded as a function on R
with support S, by defining 6(x) to be 0 when x in R is not in S. We adopt both of
these viewpoints and move from one to the other without further comment.

If @ is a subspace of ¥~ and P is projection onto @, then the condensing statistic

8(D) = PF, (2.2)

plays a central role in the following discussion. We call it a projection and the
macrostandard context it determines is said to be a projective context. Its
macrolevel is the equivalence 7 given by

D'nD"<F, —F, 1 ®. (2.3)
Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 5
This macrolevel can also be represented in terms of linearly independent vectors
®o, D1, ..., Py sSpanning @ by means of the vector-valued condensing statistic
(D) = (o(D), $1(D), ..., pp (D)), (2.4)
N
where ¢m(D) = (¢m’FD) = E ¢m(xn)s (25)
n=1

with D =z, 2,... zy.

When @ contains the constant vector 1, namely the element of ¥~ which is identi-
cally 1 on 8, it follows from (2.3) that (1, F,,,) = (1, F},.); in other words data-sets with
the same condensation then have the same arity. Such a projection is said to be arity
restricted. The representation (2.4) is said to be regular when (i) ¢,(x) =1 on S, so
that ¢,(D) = N is the arity of D and the projection is arity restricted, and when (ii)
¢, L1 foreachm=1,2,... M.

3. Consistent surrogation

In a p-context with the representing statistic § of (1.1) the suppressed spectrum
F, of the actual data-set 4 is condensed to 4(F,). If F, is a surrogate spectrum used
in place of F',, then the substitutional surrogate for the condensation is 4(F,). The
surrogate F, is said to be consistent at 4 when

AF,) = A(F,). (3.1)
When the context is identifiable 4 is invertible and (3.1) gives F, = F,. Consistency
does not depend on the representing statistic because each of them is a one-to-one
function on p-classes. Equation (3.1) is called the A-designation equation of the p-
context. In what follows we require that the surrogates used are consistent, namely
satisfy (3.1) for the data-set 4 under consideration, partly because it is intuitively
plausible to do so and partly because this has interesting consequences. We do not
argue that there are normative grounds for adopting (3.1).

Although it seems sensible to use consistent surrogates there is a technical
difficulty with the designation equation (3.1). For the condensing statistic ¢ is given
by (1.1) in terms of a function 4 which is defined on data spectra, but for the
designation equation to have meaning 4 must also be defined on surrogate spectra.
In other words we have to extend 4 from & to 4. There is no difficulty when the result
of substituting #, for F, in the expression A(F,) has an unambiguous mathematical
meaning as, for example, in a projective context. For if § is the projection (2.2), then
we can extend 4 from & to % by defining it on ¢ through the expression

AQ) = PG,V Ge¥.

Adopting this extension of 4, the designation equation (3.1) takes the unambiguous
form

PF, = PF,. (3.2)
In the representation of the statistic ¢ of (2.4) this equation takes the form
(P Fa) = (B Fa), 0 <m <M. (3.3)

But in a context defined in terms of an arbitrary macrolevel the corresponding
extension of 4 is not so obvious. We return to this difficulty later. For the time being
we discuss only projections. The general case is addressed in §5.4.

Phil. Trans. R. Soc. Lond. A (1991)
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6 P. D. Finch

4. Surrogation in projective contexts

In this section we consider arity restricted projective contexts and certain
exponential families of surrogate spectra associated with them. We show that the
designation equation is the ML-estimation equation in that family and consider a
number of issues raised by this fact. We present a descriptive version of Bayes’s
postulate, a descriptive interpretation of the concept of probability in binary
sequences and illustrate explanatory surrogation by means of a generalized linear
model. Finally we discuss entropy, likelihood and their maximizations.

4.1. Exponential families

For each 0 in ¥, exp 0 is also in ¥~ and, since it is everywhere positive on §, it is
an element of 4. Conversely each surrogate spectrum 7 in % arises in this way
because 6 = In G is in ¥". Thus any non-empty subset I” of ¢, including ¥ itself, can
be presented as the exponential family

&) ={expy:ye®}, O =InT. (4.1)

The exponential family is said to be flat when @ is a subspace of ¥ and is said to be
curved otherwise. The densities corresponding to the surrogate spectra to &(@) are
the functions

g(x|0) = e"/(1,e’) = exp {0(x) —In Z(0)}, (4.2)
where Z(0) =Y e’ = (1,¢). (4.3)
s

In (4.1) vectors 6’,60” which differ by a constant vector of ¥ determine the same
density in (4.2). The exponential family of densities g(x| ) with 6 in @ is denoted by
e(@). The following result is worth noting.

Theorem 4.1. Any set {g,,:meM} of densities with common support S form the
exponential family e(©,,), where @, L 1 is the set of vectors

O, () ==V"1,Ing,,)+Ing,(x), meM. (4.4)
Proof. With 0,,(x) given by (4.4), g(- |0,,) of (4.2) is ¢,,(x) and (1,6,,) = 0.

4.2, Designation and maximum likelihood

Let 8 of (2.2) be an arity restricted projection and let ¢ of (2.4) be a regular
representation of it. The first of the designation equations (3.3), corresponding to

m=0,is (1,F,) = N where N = ¢,(D), the arity of 4, is part of the data condensation
¢(D). Dividing each of the remaining M equations of (3.3) by the first of them, we
obtain the designation equation in the ¢-representation in terms of densities, namely

(Brfa) = Bofa) 1 <m <M, (4.5)
or equivalently Pofs=Pyfs, (4.6)

where P, is projection onto the subspace @, = @ n 1+.
Consider the exponential family of densities e( namely those of the form

fHx) = exp{p(x)—InZ(¢)}, ¢

Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 7

It is well-known that if we regard f¢ as the density of a population from which the
data 4 was obtained by ordered random sampling with replacement, then the partial
derivatives of the log-likelihood function % are

where N, the arity of A4, is the sample size. Comparison of (4.5) and (4.8) shows that
if we restrict ourselves to the use of the surrogate spectra in e(®,), then the solution
to the designation equations (4.5) is the ML-estimate within that exponential family.

Thus if we adopt consistency and use only surrogate densities in ¢(@,), then there
is a uniquely determined density designated for use in place of f,, namely the density
f.4 which is the MmL-estimate of the population density under the assumptions that (i)
the population density is in e(®@,) and (ii) the data 4 is an ordered random sample
from that population. In our framework, however, the designated density f 4 1s a
surrogate for the ‘sample’ density suppressed by the data condensation; it is not
considered as an estimate of an underlying population density. Moreover maxi-
mization of likelihood is not advanced as the reason for using f,, it arises as a
consequence of consistency in the special exponential family &(®). Reasons for
choosing our surrogate spectra from that family are examined first in §5.2 and then
more deeply in §9.

In classical statistics there are pathologlcal situations in which there is no ML-
estimate f ', in the family e(®,). But in the descriptive framework presented here
there is always a unique solution in e(®,) to the designation equation (4.6) and the
analogue of the classical pathology does not arise because all the densities under
consideration have the same support. For completeness we discuss this fact in the
next section.

Equation (4.7) presents e(cﬁ ) in the form of an exponential family of probability
densities admitting the ¢,,(4) ¢m, ) as sufficient statistics. A more familiar form
of that family arises when the ¢m 0 AT ()} for some functions 6, and T If the
surrogate density f? of (4.7) is then used in place of f,, and if ¢ is in the range of the
function 7, then the corresponding surrogate for the relative frequency of readings
x in the data set 4 with T(x) = ¢ is the sum of the f?(x) over those readings, namely

() = C(¢) h(t) eXp{ 2_ Im Hm(t)},

where A(t) is the proportion of z in S with 7'(x) = t and C(¢) is a normalizing constant.
This is a standard form for an exponential family of probability densities. Thus using
only the surrogate spectra in &(®) can be viewed as modelling the suppressed data
density by the exponential family of densities for which its projective condensation
is sufficient in the sense of classical statistics. But while this relates surrogation in
&(®) to more familiar practices it is not a justification for using only surrogates from
that family.
Each surrogate spectrum @ in &(®) is such that

VeeS:In G(x) = ¢p(x), ¢pED

and can be viewed as a log-linear representation of the suppressed data spectrum in
which ¢ in @ plays the role of a vector-valued explanatory variable.

Phil. Trans. R. Soc. Lond. A (1991)
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8 P. D. Finch

4.3. The existence theorem

The existence of a unique solution in e(®@,.) to the designation equation (4.6) follows
from general results in Rockafellar (1970) and Barndorff-Nielson (1978), here we
prove this by elementary arguments. We start with two lemmas.

Lemma 4.1. The maximum and the minimum of (r, f,) for Y in ¥ with ||| = 1 and

Y L1 are £d where

1 2
a2 = %(fA(x)—I—/> , d>0.

If f, vs mot constant, then the maximum and mintmum are obtained at +yr.(x) where

Ya(@) = d7 Y fu(x) =V

Proof. If f, is constant, then d =0 and (y,f,) =0 for y L 1. When f, is not
constant, d # 0 and ||y =1, ¥ L 1 give

WG +Yl>—d = (. fa) =d—3d [ —l?
and the lemma follows.

Lemma 4.2. For each yy # 0 in @, there is exactly one real number a = a(yr) such that

: (Y, e™)/(1,e™) = (¥, fa). (4.9)
Moreover, if ||| = 1, then there exist numbers H and K which do not depend on 3 such
that

H<a))<K. (4.10)

Proof. Let [ and L be the minimum and maximum of ¢ on 8. Since ¢ L 1, and is
not 0, it is not constant and so ! < L. Since f, is strictly positive on S,

<. fa) <L. (4.11)
For each real ¢ write
W(e) = (¥, 9) (4.12)

for the mean of ¢ with respect to the density ¢* = e®/(1,e%). Let A and 4 be the
subsets of § where i = [ and y = L respectively, with sizes |A|, |4, and let X', 4" be
their set complements in S. Then

W(C) - = Z(;}[/_l) ec(lﬁ_l)/“/ll +Zec(¢—l)}’
X "
L—W(c) = X(L—) e?E [ A| + 3 e},
A A

Thus I=W(—o0)< W) < W(+o0)=L. (4.13)

But W’(c) is the variance of i with respect to the density g and it is positive because
i is not constant. Thus W(c) is strictly increasing in ¢ and, from (4.13), it takes on
all values between [ and L. It follows from (4.11) that there is just one value of ¢, a
say, satisfying (4.9). Finally, Lemma (4.1) shows that if ||¢| =1, then |W(a) =
[(¥,f4)] < d and so we have (4.10) with H = W (—d) and K = W™ '(d).

Remark. The key fact in proving the existence of a finite solution a to (4.9) is the
strict positivity of f, on S. This rules out the possibility of equality at either of the
bounds in (4.13). But if, for example, f, was only required to be non-negative on S

Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 9

and ¢ = L where F, # 0, then (y,f,) = L and there would be no finite a satisfying
(4.9). That equation would only be satisfied ‘at infinity’, in the sense that ¢g* =
lim g® is |A|"*1 ,, where I , is the indicator function of 4 and (¢, g*) = L = (¢, f,). This
sort of pathology cannot arise here because the data densities under consideration
are all strictly positive on S.

When M = dim @, = 1, Lemma (4.2) establishes the existence of a unique solution
in e(@,) to the designation equation (4.6). When M > 1 put

Q) =1n (1,e")— (1), Ved,. (4.14)

If v =a,¢,+a,d,+...+ay by, then 3Q))/0a,, is (P, 9”)— (P, f4) and so the
solutions to equations (4.5) in ¢(@,,) correspond to stationary points of ¢. Standard
arguments show that the hessian of @ is everywhere positive definite. Thus @ is
strictly convex and its stationary points are minima. The existence of a unique global
minimum, and hence of a unique density in e(®,) satisfying the designation
equations (4.5), follows from the fact that the local minima all lie in a bounded
convex region; this is an immediate consequence of Lemma (4.2). For

d
SN = WO— L), 150 = W) >0,

where W(c) is given by (4.12). Thus the solution a = a(y) to (4.9) determines the
unique vector a(y) ¥ at which @(cy) attains its minimum in the direction of yr. Let

={a(Y) Yy : e D, & || = 1} be the set of all these vectors. By (4.10), the |a(y)]
have a common finite upper bound and so all the local minima of ¢ lie in a bounded
convex region of @, for instance a large enough ball centred at 0.

4.4. Bayes’s postulate

The simplest arity restricted projection is the one determined by the subspace
@ = [1], the one-dimensional subspace of constant vectors. The data is then con-
densed to its arity, @, contains only the 0 vector and there is only one density in
e(D,), namely the umform one f ,(®) = 1/V on 8, this being the designated density
because equations (4.5) are vacuous in this case. Condensation to arity can be seen
as suppressing all the information in the data except for the number of case-readings
in it. Interpreting the suppression of information as its absence, the procedure
suggested in §4.2 leads to the following descriptive version of Bayes’s postulate:

If a finite set of case-readings is condensed to its arity, then their surrogate
density is uniform on the data support.

This version of the postulate does not assert that the actual data density is
uniform, only that the suggested surrogation procedure leads to the uniform
surrogate for that density when the data is condensed in a very special way.
Moreover it is implicit in the statement of it that there are no contextual constraints,
because if there were, then the contextual condensing statistic would give more than
just the arity of the data-set.

4.5. Binary sequences

Suppose that each reading in the data-set A is the record of a binomial
success/failure experiment consisting of n trials. The data support S is then a finite
set of binary sequences of length n and its size V < min (N, 2") where N, the arity of
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10 P. D. Finch

A, is the number of experiments. Suppose also that we condense the data set A to (i)
its arity V and (ii) the total number of successes in all the Nn trials. This condensation
is an arity restricted projection which has the representation (2.4) with M =1,
¢,=1 on S and ¢,(x) the number of successes in the reading x. From (2.5) the
condensation of 4 in this representation consists of ¢,(4) = N, the arity of 4, and
¢,(4) = T, the total number of successes in all the Nn trials. The overall success rate
is T'/Nn.

The densities g(x) in e(®,,) have the form K(q) exp {g¢,(x)}, where ¢ is a real number
and K(g) is a normalizing constant. Writing D for exp(q)/{1+exp(¢q)} and n(zx) for
¢,(x), we have

g(x) = Cp"@ (L —p)" @ xeS, (4.15)

where C = (C(p) is a normalizing constant. This is the generic form of the densities in
e(D,). The designation equation (4.5) is

O n(x) p"@ (1 —p)» @ = T/N. (4.16)
S

Writing S(¢) for the number of x in S with exactly ¢ successes, equation (4.16) takes
the form

.
Ve

S(0) pH(1— )" / % S(0) p(1—p)"t = T/N. (4.17)
t=0

In this equation the numbers S(t) are supposed known because it is assumed that the

data support is a known set. The unique p = p satisfying the designation equation

(4.17) can be determined by standard iterative procedures. Thus the designated

surrogate density has the form

falw) = C(H) PO (1 =p)" @, e, (4.18)

When n = 1 the context is identifiable. If n > 2 and S consists of all the 2" binary
sequences of length n, in which case N > V = 2", then S(¢) is the binomial coefficient

(7;) In this case C(p) = 1 and the solution to (4.17) is p = T/Nn, the overall success

rate, and
fal@) = pr@(1—py» @, =T/Nn, (4.19)

for each « in 8. In partlcular the corresponding surrogate for the relative frequency
in the data set A4 of component experiments with exactly ¢ successes is

San )y = (7;) P(L—p)" ", 0<t<n, (4.20)

namely the binomial probability for ¢ successes in n independent trials with common
success probability p = T/Nn, the overall success rate.

The condensation of a finite number of equally sized finite binary sequences to
their arity and total successes is not fruitful when the surrogate f 4 of (4.18) does not
mimic the suppressed actual density f,. It is fruitful for randomly generated
independent trials because, in a very large series of such experiments, the f () of
(4.19) and the f A{n‘l )} of (4.20) are hkely to be close to their sample counterparts
namely the suppressed data densities f,(x) and f,{n')}. On the other hand, the
large N requirement together with (4.19) is suggestive of the way the concept of
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Model-free data condensation 11

probability is related to long-run relative frequency in certain types of binomial
sequences. Looking from data analysis to probability theory, rather than in the
reverse direction, probability in statistical analysis can be seen as a convenient
paraphrase of the fact that, through condensation to arity and total successes, the
overall success rate provides fruitful descriptions of data generated by simple games
of chance and the adoption of a paradigm which sees most, if not all, data as
generated, at least conceptually, by similar mechanisms.

4.6. Explanatory surrogation and generalized linear models

Data analysis is often directed to the examination of relationships between
variables. For instance, suppose that each reading x is an ordered pair (&§,7) of
possibly vector-valued quantities and that g is a surrogate for f, based on the
condensation of the data-set 4 at the macrolevel p. Given £, the surrogate for the
conditional density of # is

g8 =g n/g, ), (4.21)

where g(¢, -) is the marginal surrogate density for £ Equation (4.21) exhibits the
surrogate dependence of the variable # on the variable £ regarded as an explanatory
case profile. We refer to its use in that way as explanatory surrogation.

When the condensing macrolevel p is the projection 7 of (2.3), the conditional
densities derived from the surrogate spectra in &(®) are the

g1 €) = E(E n)/E(E, ), (4.22)
where E(&,n) =exp g n), ¢eP, (4.23)

and E(g, ) is the sum of the E(§, ») over those % for which (£, %) is in the data support
S. If ¢,,1 <k < K, are linearly independent vectors spanning @, then

K
k=1

where the ¢, are uniquely determined by ¢.

To illustrate explanatory surrogation and relate it to generalized linear models, we
condense the data by a projection which can be split into three parts. The first
condenses the bivariate spectrum F, (£, %) in a special way, the second condenses the
marginal spectrum F,(,%) and the third condenses the marginal spectrum F, (¢, -).
To formulate this data condensation let P be the set of distinct profiles £ in the data,
let @ be the set of distinct values taken by the explained variable 5 in the data-set
and let the data-set itself be 4 = x,,x,, ..., x5 with z, = (£,,7,,)-

Let a,,1 <u < U be linearly independent functions on P and let w be a non-
constant weighting function on @. The first part of the data condensation condenses
the bivariate spectrum F, (£, %) to the U statistics

N

N
Wy = Z o, (E)w(n,), 1<us<U. (4.25)
n=1

Let 8,,1 < ¢ < I, be I linearly independent functions on . The second part of the
data condensation condenses the marginal spectrum F, (-, %) to the I statistics

N
Y= % fi(n.), 1<i<L (4.26)
n=1

Phil. Trans. R. Soc. Lond. A (1991)
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12 P.D. Finch

Finally let ¥;,1 < j < J, be J linearly independent functions on P. The third part of
the data condensation condenses the marginal spectrum F, (&, -) to the J statistics

N
X;= 2y, 1<j<J. (4.27)
n=1

To formulate this data condensation as a projection, introduce the I+J+U

VeCtOI'S Of V given by ¢u(gv77) = au(g) ZU(’)]), 1 < U < U> ¢U+i(g’77) = 181(77)’1 S l < I’
and ¢, (&) =¥;(§),1 <j < J. Let @ be the subspace of V which is spanned by
these vectors. Since

(PusFa) = %%(5) w(n) Fy(&m) = W,,
(Posir Fa) = %ﬂi(ﬂ)FA(‘,ﬂ) =1, (4.28)
(Purrap Fa) = %%(5)&(5, =X,
it follows from (2.5) that condensing the data to the statistics W,,1 <u < U,Y,,
1<¢<I and X;,1 <j < J, corresponds to data condensation by the projection of

F, onto ®.
Taking K = U+1+J in (4.24), equations (4.23) and (4.24) give

E(E ) = &) win)+S(n) +«(€), (4.29)

where

I
Bm) = X ey Bin), (4.30)

Thus the generic conditional density given by (4.22) is

_ _exp{a(§) w(n) + A1)}
% exp {x(§) w(§)+ A}

g(n1§) (4.31)

where the summation in the denominator extends over those ¢ for which (£, {) is in
the data support S. If we use a consistent surrogate spectrum from &(®), then the
constants ¢, are determined by the designation equations (3.3), namely by equations
(4.28) with ¥, on the left replaced by F,. The values so obtained are the usual ML-
estimates of those constants.

To relate the form of (4.31) to generalized linear models consider the special case
w(y) = 7 and note that the conditional surrogate mean of 7, namely

Py = %ng(nig) = Mix(£)}, (4.32)

is a function M of a(§). Its derivative M'{a(§)} is the variance of 9 with respect to the
conditional density g(5|£) and is therefore positive for a £ associated with more than
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Model-free data condensation 13

one value of 3. For such a & M{x(§)} is a strictly increasing function of a(£) and so
it has an inverse M~ = H say. Given the profile £,

a(§) = H(py,) (4.33)

is a function of the conditional surrogate mean of 3. This equation presents H as the
link function of a generalized linear model in canonical form which is based on the
exponential family

g(n1€) = exp {a(&) n+ B(n) +y(E)}, (4.34)

where exp y(£) is a normalizing factor. If we retain the general weighting w, then we
obtain a generalized linear model in non-canonical form, g(n | £) has the form exp {a(£)

7)+ () +y(€)} and o(£) = H(u,,,) is a function of the conditional mean of w(y).
By way of 1llustrat10n suppose that 7 is a binary 0, 1 variable. Equation (4.32) is
exp {a(§)+p(1
M) = g(11) = p (@) +A(1)}

exp {f(0)} +exp {«(§) + B(1)}

The inverse function M~! is a shifted version of the logit and (4.33) is the logistic
regression

logit g(1]£) = B(1)—p(0) +«(£) (4.35)

expressing g(1|£) in terms of a constant and the explanatory variables «,(£),
1<u<U

The classical analogue of the explanatory surrogation (4.34) would involve

independent random variables Y;,Y,, ..., ¥, having exponential densities of the same
form but with different parameters. The density for ¥, would be
fly;0,) = exp {ya(6,)+b(y,) +c(0,)}, (4.36)

where 6, is the associated value of the parameter. With each Y, there would be
associated a vector
X, = (X4, Xy v s Tyyg) (4.37)

of explanatory variables and the link function L would relate the mean u, of ¥, to
them by an equation of the form

U
u=1

where the function L is monotone and hence invertible, and the y, are estimated by,
for example, maximum likelihood. There are obvious analogies between (4.34) and
(4.36), and between the roles played by the x, and the «(£), with x,, being the
analogue of o, (£). Nevertheless there are two important differences. Firstly g(y|§) of
(4.34) is a conditional density whereas f(y;0,) of (4.36) is an unconditional density.
Secondly, in the classical framework a number of different link functions might be
considered in conjunction with the exponential families (4.36).

An argument like that leading from (4.31) to (4.32) and (4.33) shows that there is
a function M, with inverse M~! = H, such that

w=Ma(0,)}, a6,) = H(u,).
Thus (4.38) gives

U
a(6,) = HL‘l{ 2 Yu xu,}. (4.39)
u=1

Phil. Trans. R. Soc. Lond. A (1991)
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14 P. D. Finch

The natural link function L = H arises in the explanatory surrogation considered
here because we are using only the surrogate spectra in &(®), where @ is the subspace
determining the projective data condensation then under study. We return to this
point in §9.4.

4.7. Entropy and likelihood

The entropy of a density ¢ in ¥ is

Ent (9) = —(Ing,9). (4.40)
It is well known that if f and ¢ are any two densities in ¢, then
Ent (9) < —(Inf.g), (4.41)

with equality only when f = g. This follows from the fact that, for positive real c,
Inc¢ > 1—c1; by taking ¢ = g(x)/f(x) and adding over the z in S.

Let @ be a subspace of ¥~ which contains the constant vector 1 and, as in §4.2, let
&, = @, 11. We say that a density g in & is ®,-consistent at the data-set 4 when it
has the same projection onto @, as f,, namely when

W, 9) = (. f1), Vp €Dy (4.42)

By the existence theorem of §4.3, there is exactly one density in e(®,) which is
@,-consistent at 4; let it be

fa=1P=eb)(1,e9), (4.43)

where ¢ is the unique vector in @, which determines f 4 It follows from (4.42) that
(¢,f?) = (¢,f4) and hence that

Ent (f,) = —(In f,.£). (4.44)

From this equation, together with (4.41) and (4.42), we see that if g is any density of
% which is @,-consistent at 4, then

Ent (9) < —(In f4.g) = —(In f4.£) = Ent () (4.45)
with equality only when g = f - In other words we have the following result.

Theorem 4.2. I'n an arity restricted projective context with suppressed data-set A and
condensation by projection onto @, the uniquely determined density in e(D,) which is
D.-consistent at A maximizes entropy over the class of all the densities in G which are
D -consistent at A.

The likelihood function of the data-set 4 = x;,,,...,2,y is defined to be the
function lik(- |4) on ¢ given by the expression

N
lik (g]4) = TI g(x,) = exp N(In g.f,). (4.46)

This is the likelihood function of classical statistics when 4 is regarded as an ordered
random sample of size N drawn with replacement from a population with density g.
From the earlier results of this section we obtain

lik (9]4) < exp {—N Ent (f,)} = lik (f,]4), (4.47)
with equality only when g = f,, and
lik (f,14) = exp {—N Ent (f,)}. (4.48)
Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 15
It follows from the results of §§4.2 and 4.3 that we have the following theorem.

Theorem 4.3. In an arity restricted projective context with suppressed data-set A and
condensation by projection onto D, the uniquely determined density in e(D,) which is
D -consistent at A maximizes likelihood over all the densities in e(®D,,).

This follows from (4.14), namely Q(y) = —N ! In lik (f¥|A4). It can also be seen by
writing /,(*) for the log-likelihood In lik (- |4) and noting that, for any 6, ¥ in @,

NHL() =L = @ —0.f)+In{(1, %) /(1,e")}.

But (4.41) with g = f¥ and f = f? shows that the last term on the right is bounded
below by (08—, f?) and so

N UL =Ll 2 0=, Y = fa)-
If f¥ = f 4> then the lower bound on the right is 0 by (4.42), because f ', is consistent
at 4 and 00— is in @,. Thus [ ,( fA ) = 1,(f% for all  in @, with equality only when
17 = fa:

Thus consistency in surrogation leads one to designate a surrogate density which
maximizes both entropy and likelihood. It should be noted, however, that these
respective maximizations are carried out over different domains. The mathematical
content of Theorems (4.2) and (4.3) is little more than a restatement of the well-
known result that in random samples from exponential populations one obtains the
same estimate of the unknown population density by maximizing entropy and
maximizing likelihood (see, for example, Dutta 1966 ; Campbell 1970).

Even though likelihood, as defined by (4.46), can be interpreted probabilistically
in a random sampling context, its meaning here does not depend on underlying
probability concepts. At this stage of our enquiry it is simply a function of data
which turns out to be useful in data analysis and which suggests analogies with
inferential statistics. Its phenomenological interpretation is examined in §9.

4.8. Concluding remarks

The preceding results show that classical statistical analysis based on flat
exponential models can be interpreted in a purely descriptive way in terms of arity-
restricted projective data condensation. Ideas like sufficiency, the maximization of
entropy and the maximization of likelihood arise, not as ad hoc principles but, simply
as a consequence of designating a surrogate density for use in an arity-restricted
context to achieve consistency within the associated exponential family e(®,).
Theorem 4.2 shows that this family arises in a natural way when one maximizes
entropy ; but, by itself, this is not a compelling reason for restricting surrogation to
the densities in that family. Nevertheless there are some important differences
between the viewpoint adopted here and that of classical statistics. In the first place
f ', is viewed as the designated surrogate for the suppressed data density; it is not
seen, as it is in classical statistics, as an estimate of an unknown population density.
In the second place, there is no explicit reference to a mechanism, stochastic or
otherwise, which might have generated the data.

Seeing f 4 as a surrogate for the suppressed data density f, is closely related to
the viewpoint in exploratory data analysis when one compares f, with f,, for instance
by graphical procedures involving residuals, to ascertain how well the model fits the
data. The probabilistic theory of statistical inference has to do with formulating such
eye-ball assessments in a more precise way. These more precise assessments involve
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16 P.D. Finch

goodness-of-fit criteria and the sampling distributions of corresponding measures of
the discrepancy between f, and f 4. Nevertheless the underlying concern with how
well the model fits the data shows that the exploratory viewpoint has much in
common with the one adopted here. There remains, of course, the question of
whether one can assess the discrepancy between f, and f, in a meaningful way
without recourse to sampling distributions and we address this question in §6.2.
The absence of probability concepts from the data condensation framework
suggests the possibility of clarifying those concepts by means of data condensation.
Indeed it could be argued that the concept of probability arises out of the way we
organize the multitude of our perceptions of the world and that this consists, at least
in part, in their condensation to what is salient. With that in mind, it does not seem
altogether pointless to develop a theory of data condensation in a non-probabilistic
framework and then investigate its bearing, if any on probability concepts. The
preceding discussion of Bayes’s postulate and binary sequences can be seen as first
steps in that direction. However, arity restricted projective contexts seem, on the
face of it, too rudimentary to sustain a wide degree of generality in such investigations
and so we turn instead to two less ambitious but more immediate problems: (i) in an
arity restricted context with data condensed by projection onto @, to what extent
can one justify using only the surrogate spectra in &(®), and (ii) can one extend the
procedures developed for projective contexts to general macrostandard contexts ?

5. Surrogation in general contexts

A surrogation procedure for the general p-context is defined to be an algorithm P
that assigns to each data-set D in & a corresponding surrogate spectrum F, =
P(D), for use in place of F, when D is condensed at the macrolevel p, such that
data-sets with the same spectrum are assigned the same surrogate. It is a mapping

P:2—>% with the property
¥, =F,=PD)=PD"). (5.1)

Among these mappings there are some which seem to be more useful than others. For
instance, if we require consistency at the data-set A, then P must be such that
equation (3.1) holds with F, = P(4). We now discuss two other properties,
computability and equal informativeness.

5.1. Computability
A surrogation procedure P is said to be p-computable when
D'pD”=P(D’) = P(D"). (5.2)

The assigned surrogate spectrum is then a function of the data condensation at
macrolevel p and hence, in principle, computable from it. There is a sense in which
one cannot do otherwise than use surrogation procedures that conform to (5.2),
because if one needed something more than the data condensation to compute the
surrogate spectrum, then that something would be, in effect, a contextual constraint
which should be part of the contextual macrolevel. The viewpoint adopted here is
that the data condensation p(D) embodies everything that is known or supposed
known about the data-set D. From that viewpoint p-computability is a statement
about the meaning of surrogation at the macrolevel p.

More precisely, suppose one set out to use a surrogation procedure P at macrolevel
p that was not p-computable. There would be data-sets D', D” in 9 with D’pD” but
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Model-free data condensation 17

PD’) # P(D"). Let y be the equivalence on 2 for which EyD means P(E) = P(D).
Then 7 = y N pis an equivalence on & with o < 7 < p. The macrolevel 7 is finer than
p and it determines a corresponding macrostandard context at macrolevel 7. If ¢
represents p, then # given by n(D) = (8(D), P(D)) represents 7. Since # distinguishes
between at least one pair of p-equivalent data-sets, e.g. D" and D” mentioned
above, we are working at a finer macrolevel than p. Moreover since £7D implies that
P(H) = P(D), the surrogation procedure P is computable at the level 7 at which we are
then working. If for some D in & we required more than its condensation p(D) to
compute the surrogate spectrum P (D), then this would discriminate between data
sets at the macrolevel 7 which is finer than the level p at which we claimed to be
working, and call into question the correctness of saying that the macrolevel of the
enquiry was p.

In what follows we adopt computability without further comment. All surrogation
procedures are to be taken as computable at the macrolevels of the contexts in which
they are used. In the context of section (4.2), the surrogation procedure P(D) = NfD
is computable with respect to the projection then in question.

5.2. Equal informativeness

Because of (5.2), a p-computable surrogation procedure assigns the same surrogate
spectrum to each of the data-sets in a p-equivalence class. This common surrogate
spectrum might supply different amounts of information about the various spectra
for which it deputizes and this could be seen as inappropriate because those spectra
are indistinguishable at the macrolevel p. To examine this possibility we adopt the
usual logarithmic measure of information and define the amount of information
provided by case n of the data-set D = x; , ... 2, to be

1,(D) =InFy(x,). (5.3)
The total information in D is defined to be
N
ID)= X I,(D)=(Fp, In Fp). (5.4)
n=1

When F, is a surrogate spectrum used in place of ), the substitutional surrogate
version of (5.3) is

I,(D) = In Fy(x,), (5.5)
whereas that of equation (5.4) is
N
ID|\Fp) = X 1,D)=(Fp, InFp). (5.6)
n=1

This is the actual total of the individual pieces of surrogate information supplied by

the cases in D when F), is replaced by F,. In general it is not computable from the

condensation p(D) alone, even when F, is derived from a p-computable surrogation

procedure, because we need Fy, to compute the inner product on the right of (5.6).
A surrogation procedure P is said to be equally informative about p(D) when

KD’ |P(D)} = D" | P(D)},YD',D"ep(D), (5.7)
or, equivalently, from (5.6), when
¥y —F, L InPD),YD',D"epD). (5.8)
Phil. Trans. R. Soc. Lond. A (1991)
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18 P. D. Finch
Such procedures can be characterized in the following way. Write
Vip(D)} = {Fy—Fy: I/, D" € p(D)} (5.9)
for the set of differences of the spectra of the data-sets in p(D) and let
Bip(D)} = [Vip(D)}* (5.10)

be the subspace of ¥~ orthogonal to it. From (5.8) we obtain the following theorem.

Theorem 5.1. The surrogation procedure P is equally informative about p(D) if and
only if the surrogate spectrum P(D) belongs to the exponential family &[P{p(D)}].

It is advantageous to use surrogation procedures P which are simultaneously
equally informative about each p-equivalence class, namely those for which

P(D)e &[P{p(D)}),VDeD, (5.11)

because they can be used whatever the data-set under study on any particular
occasion. From a practical viewpoint it is parsimonious to work with a subset of these
procedures. To do so write

Vip) = U VipD)}, (5.12)
De2
and D(p) ={V(p)}* = N P{p(D)} (5.13)
De2

for the subspace of ¥~ orthogonal to it. The surrogation procedures P which are such
that, for each 4 in &, the surrogate spectrum P(4) belongs to the exponential family

E[@(p)]= N E[P{pD)i] (5.14)

De9
are simultaneously equally informative about each p-equivalence class. Such
procedures are said to be fully p-informative. A surrogation procedure P is fully p-

informative when
VDeD :P(D) =exp (¢p), ¢peD(p). (5.15)

The elements of the exponential family &{®(p)} are called the macrosurrogate spectra
of the p-context. The surrogate spectra determined by a fully informative surrogation
procedure are macrosurrogate spectra. The following result should be noted.

Theorem 5.2. If p is the macrolevel corresponding to data condensation by projection
onto @, then P(p) = .

Proof. Since D’pD” means that F, —F,, 1 @, every ¢ in @ belongs to each ®{p(D)}.
Thus @ < &(p).

In particular, the restriction in §4 to the surrogate spectra in &(®) is a restriction
to macrosurrogate spectra.

Equally informative surrogation procedures could be questioned on the grounds
that information about some data-sets might be more important than it is about
others. For example, one might think of replacing (5.7) by

LD |P(D); _ IID"| P(D)}
WD) wo)

VD, D" ep(D), (5.16)

where the W(D) are positive weights which reflect the perceived relative importance
of the data-sets in &, the more important D the bigger its weight. Although this
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Model-free data condensation 19

suggestion has some force, unequal weights in (5.16) would discriminate between the
data-sets in a p-equivalence class contrary to the supposition that they are
indistinguishable at the macrolevel p of the enquiry. As with violations of p-
computability, we would then be working at a finer macrolevel than p and (5.7) would
hold at that finer macrolevel. However, our viewpoint here is not that one must use
equally informative surrogation procedures but rather the clarification of what is
involved when we either do or not use them. In any event, as we will see later, there
are other ways of quantifying the informational concept underlying I{D | FD} of (5.6).

5.3. Projective closure

Let 7 be the projection determined by the subspace @ of ¥~ through the logical
equivalence (2.3). When @ = {0} contains only the 0-vector, 7 is the universal relation
u on & for which any pair of data-sets of & are u-related. Thus any macrolevel p is
contained in at least one projection, for example . Suppose now that {®,:t€T'} is a
non-empty family of subspaces of ¥ and let m, be the projective macrolevel
corresponding to data condensation by projection onto @,. Write

D=V D, (5.17)

tel

for the smallest subspace of ¥~ containing all the @, and
m= ﬂ m, (5.18)

tel

for the binary relation on 2 which is the set intersection of all the 7,. Then 7 is the
projective macrolevel corresponding to data condensation by projection onto @. In
other words, the set intersection of any non-empty family of projective macrolevels
is itself a projective macrolevel. It follows that for each macrolevel p there is a
smallest projective macrolevel which contains it, namely the set intersection of all
the projective macrolevels which do contain it, that family being non-empty since
the universal relation » belongs to it. We call the smallest projective macrolevel
containing p the projective closure of p and denote it by p. A projection is its own
closure. The following theorem exhibits the structure of p in terms of that of p.

Theorem 5.3. The projective closure p of the macrolevel p is the projective macrolevel
corresponding to data condensation by projection onto the subspace P(p) of (5.13).

Proof. Let m be the macrolevel corresponding to projection onto @(p). When D’pD”,
Fp —F, is in V(p) of (5.12) and so
D'pD” = Fy, —F,, L &(p)=D'nD".
In other words p < . To show that 7 is the projective closure of p we verify that if
A 2 pis any projection containing p, then 7 = A. To do so suppose that A corresponds
to projection onto the subspace ¥ of ¥~ and write 4 =7 N A for the projection

determined by @ = @(p) v ¥, the subspace spanned by @(p) and ¥. Since p < p,
D’pD” implies that D’uD”, and so, since

D'uD" < ¥, —F, 1 D,
every vector ¢ in @ is orthogonal to each difference ¥y, —F,, with D'pD”. It follows
that @ < @(p). Since ® = D(p) V ¥ we must have @ = ®(p) and ¥ < D(p). In other

words, y = and 7 S A.
The following result is worth noting.
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20 P. D. Finch
Theorem 5.4. If j is the projective closure of p, then
D(p) = P(p). (5.19)
Proof. Since p € 7 implies that V(p) < V(7), we have
p S T=>D(1) S D(p). (56.20)

In particular @(p) < @(p). To establish the reverse inclusion, and hence (5.19), note
that a vector @ L @(p) is a finite linear combination of spectral differences F —Fp,
with D’pD” and hence, by Theorem (5.3), with F, —F,. L ®@(p). It follows that
0 1L @(p) and hence that @(p) = P(p).

Corollary. The macrosurrogate spectra of the p-context are the same as those of the
p-context.

Projective closure can also be characterized by means of the likelihood function.
This is the content of the following theorem.

Theorem 5.5. If p is the projective closure of p, then
D'pD" = lik (g] D) = lik (g1 D),V g € e{D(p)}.
Proof. If g = e%/(1,¢?), with ¢ in &{P(p)}, then (4.30) gives
lik (71 D) = exp (4, Fp)—In (1, ¢%)].
Thus lik (] 2)/1ik (¢ 1D") = exp [, Fyy—Fp)],
and the theorem is an immediate consequence.
Corollary. 4 macrolevel p is its own projective closure if and only if D(p) separates

the p-equivalence classes in the sense that, when p(D") # p(D") there is a density g in
e{D(p)} with lik (g|D") # lik (9| D").

Proof. When ®(p) separates the p-equivalence classes the forward implication in
Theorem (5.5) shows that 5 < p and hence that p = 5. Conversely when p = p, the
backward implication shows that @(p) separates p-classes.

It is an immediate consequence of (5.2) and p < p that

Theorem 5.6. 4 p-computable surrogation procedure is p-computable.
Finally we note this theorem.

Theorem 5.7. If p is arity-restricted, that is p-equivalent data-sets have the same arity,
then p is also arity restricted.

Proof. For any data-sets D’,D” the inner product (1,F, —Fp.) is the difference
between the arities of D', D”. Thus from (5.9), if p is arity restricted 1 is orthogonal
to each V{p(D)}, that is @(p) contains 1 and hence p is arity restricted. Note that the
converse result is trivially true because p < p.

In the next section we examine consistency in the p-context and resolve the
difficulty mentioned at the end of §3.

5.4. Consistency and closure

In a p-context, the macrolevel p contains the symmetry relation o and so there is
a function H such that
VDeZ:pD) = H(Fp). (5.21)
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Model-free data condensation 21
Thus the representation-free version of the 4-designation equation (3.1) is
H(F,) = H(F,). (5.22)
Since p < p, there is a function I” such that
VDe2:pD) = I{pD)} = o H(Fy) (5.23)
and the representation-free version of the A-designation equation of the p-context is
T'oH(F,) = T'oH(F,). (5.24)

It follows at once that any surrogate spectrum F, satisfying (5.22) must also satisfy
(5.24). In other words, any surrogate spectrum which is A-consistent for the p-
context is also A-consistent for the associated g-context.

Suppose that p is arity-restricted so that, by Theorem (5.7), 5 is also arity-
restricted, let N be the arity of 4 and write @,(p) for @(p) N 1+. By the result
established in §4.3, the designation equation (5.24) of the p-context has one and only
one solution in &{P(p)}, namely R .

F, = Nf,, (5.25)

where f ', 18 the unique density in the exponential family e{®,(p)} determined by the
analogue of equation (4.6) for the p-context. Thus, by virtue of the corollary to
Theorem (5.4), there is at most one macrosurrogate spectrum of the p-context which
is A-consistent and, when it exists, it is the unique 4-consistent macrosurrogate
spectrum of the g-context. Thus we resolve the difficulty mentioned at the end of §3
by designating our surrogate spectra through consistency in the p-context instead of
the originating p-context. This avoids the difficulty of defining the function H of
(6.21) on surrogate spectra because I"o H of (5.24) is well defined by the equation

FoH="P,,, (5.26)

as projection onto @, (p). Moreover, with H(F,) defined in a way consistent with
(5.26), if (5.22) did have a macrosurrogate solution it would have to be the one
obtained by solving (5.24).

This way of designating a surrogate spectrum in an arity-restricted p-context is a
p-computable surrogation procedure. For in the g-context the surrogation procedure
P which consists in taking P(4) to be F, of (5.25) is p-computable, that is P(D’) =
P(D”) when D’pD”, because the macrolevel p corresponds to data condensation by a
projection. Since p < p, D’pD” implies that D’pD” and hence that P(D’) = P(D”); in
other words P is a p-computable surrogation procedure when it is applied to the
originating p-context.

When p is the projective macrolevel defined by the condensation of data D to the
projection of Fj, onto @ we have @ < @(p), this was noted by Theorem (5.2).
However, that theorem does not exclude the possibility that @ is a proper subset of
®(p). By theorem (5.3) g, the projective closure of p, corresponds to data condensation
by projection onto @(p). But since p is a projective macrolevel, g = p and so

Pp By = Py Fp <> Py F = Py Fyr
or equivalently,
Fy—Fy L @< By —Fy L &(p),
and, when @ is a proper subspace of @(p), the projective macrolevel p can be
generated by projection onto either of them. This possibility raises no difficulties
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22 P. D. Finch

from the viewpoint of surrogate designation because the designated surrogate
density will then be in e(®,). For the designation equation (4.6) has a unique solution
in e(®,) and, since e(P,) < e{D,(p)} this must be the unique solution in e{®D,(p)} to
the corresponding equation with @, replaced by @, (p).

5.5. Concluding remarks

The results obtained in this section can be seen as a satisfactory resolution of the
issues raised at the end of §4. The use of the surrogate spectra in the exponential
family &(®P) is related to the adoption of equal informativeness and parsimony in
mathematical development, and while these are not compelling reasons they do show
that their use is not entirely arbitrary. A deeper reason is discussed in §9.4. Secondly
the procedures developed for projective contexts are extended to general macro-
standard contexts by an appropriate use of projective closures.

There are two aspects of projective closure which are worth noting. The first is that
the relationship between a macrolevel and its projective closure is similar to that in
classical statistics between sufficiency and minimal sufficiency, but since this analogy
is peripheral to our main concerns we do not examine it further here. The second is
the relationship between projective closure and the linearization of a nonlinear data
condensation. The projective macrolevel 7 of (2.3), corresponding to data
condensation by projection onto the subspace @, can be represented by the vector-
valued condensing statistic ¢ of equation (2.4). In that equation each component
real-valued condensing statistic ¢,,(D) is the linear aggregation of the function ¢,,
over the data-set which is given by equation (2.5). Data condensation by means of
nonlinear aggregation over the data-set will, in general, generate a non-projective
macrolevel. By working in the macrostandard context corresponding to its projective
closure we transform the nonlinear data condensation into a linear one.

It should be noted that the results obtained so far lead to the designation of a
uniquely determined macrosurrogate spectrum, which is computable from the data
condensation, without any consideration of how well that surrogate fits the
suppressed data spectrum. From the viewpoint adopted here the issue of goodness of
fit is not a question of the best use of a given data condensation but the problem of
what data condensation to use. In other words, it concerns the choice of macrolevel.
Assessment of surrogate performance is examined in the next section. Because of the
reduction to projective contexts by closure, we focus on projective contexts when it
is convenient to do so.

6. Surrogate performance

The assessment of surrogate performance involves two related but separate issues
(i) how well a proposed surrogate depicts the actual spectrum suppressed in the data
condensation, and (ii) how effective similar condensations might be for other data-
sets. Both issues are practically important but we are principally concerned here with
only the first of them. The second is discussed briefly in §9.5. We focus on ordered
pairs [F,, F})] consisting of a data spectrum F, and a possible surrogate for it,
F,. Such a pair is called a depiction and [F,, F,] is said to be the depiction of ¥,
by F,,.

Throughout the section we suppose that we are dealing with an arity restricted
context, 4 is the actual data-set being considered and N is its arity.
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Model-free data condensation 23

6.1. Proximaity to actuality

We measure proximity between a data spectrum F, and its surrogate F, by a
scaled version of the difference between the information in D and the information
about D contained in F,,. The amounts of information in question are taken to be I(D)
of (5.4) and I(D | F,) of (5.6) and the assessment of how well #,, depicts F, is based on

the duandity AFy, By] = N[D) 1D | Fy), (6.1
the smaller its value the better the depiction of F}, by F,. We call 4 [FD,FD] the

information deviance of the depiction [F,, F,)]. Writing F,, Nf ' Fy = Nf,, we obtain
the information deviance in terms of densities, namely

A[Fy, Fp) = (I fp, fp) = (I fp. ) (6.2)
and (4.41) shows that it is positive except when fj, = f,. Equation (6.2) also shows
that information deviance is the measure of nearness of probability distributions
introduced by Kullback & Liebler (1951). We can also regard information deviance
as a likelihood-ratio statistic because, from (4.46), N(In g, f,,) is the log-likelihood [ ,(g)
and so

A[Fy, Fyl = (1/N)lp(fo) = ln(fp)} (6.3)
_ 1 (lik (fD|D>}
—yhn {ﬁk 7o D) (©-3)

In particular, the deviance of classical statistics is 2V times information deviance.
It follows from (6.3) that if /', and F'}, are two possible surrogates for Fj, then

A[Fy, F)) < A[Fy, Fry) < 1ik (f,| D) > lik (7| D). (6.4)

In other words the bigger the D-likelihood of F,, the better the depiction of F,, by
F, as measured by information deviance.

If p is the projective macrolevel correspondlng to data condensation by projection
onto @, then, by Theorem (4.2), the unique density f 4, in (D) which is D -consistent
at 4 maximizes 4-likelihood over e(®@,). In other words, recalling the closmg remarks
of §5.4, the designated macrosurrogate density f "4 leads to the best depiction of F, by
a macrosurrogate spectrum of the p-context. From (4.48) and (6.3), the 1nformat10n
deviance of that depiction is the difference between the entropies of the designated
macrosurrogate density, and the suppressed actual density. Introducing the
dependence on the macrolevel explicitly, by writing FAlp and f 4} for the designated
macrosurrogate spectrum and density at the projective macrolevel p, we obtain

AF, Fyy) = Ent (fy,) — Ent (£,). (6.5)
The following theorem shows that the finer the projective macrolevel, the better the
depiction.
Theorem 6.1. If p = T are arity-restricted macrolevels, then
A[F g, Fyp] < ALy, Fyle).

Proof. Both p and 7 are arity-restricted by Theorem (5.7). By the implication
(5.20), we have @(1) = @ (p) and hence e{Py(7)} < e{P,(p)}. Thus both fA|p and fAIr
belong to e{@,(p)}. But by theorem (4.2) f,; maximizes A-likelihood over e{®,(p)},
hence 4 o a
lik (fAlflA) < lik (fA|p|A)
and the theorem is an immediate consequence of equation (6.3).
Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

/\
\
A
[\
N

//\

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A \
)

[

y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

24 P.D. Finch

The smallest value of A[F,,F, | is 0. This arises when p = o, the symmetry
equivalence, and corresponds to data condensation by projection onto ¥". The
context is then identifiable and FA|0 =r,.

The largest value of 4[F,, F,,] arises when 7 = « the arity equivalence, namely the
macrolevel o for which D’aD” means that D’,D” have the same arity. This
corresponds to data condensation by projection onto the one-dimensional subspace
generated by the constant vector 1. For any other arity-restricted macrolevel p we
have p < a and so, by Theorem (6.1), the largest information deviance occurs when
7 =a. But, as in §4.4,

finl2) =1/V,xes, (6.6)
with entropy Ent ( f ) =InV, .
and so, by (6.5), A[F,,F,,] =In V—Ent (f,) (6.8)

is the largest value of A[F,, F’Akf].

6.2. Assessing proximity

Of two depictions of F,, the one with the smaller information deviance is the better
depiction. It is parsimonious to compress all possible pairwise comparisons into a
smaller number of standardized comparisons. We may do so by adopting the worst
case as a benchmark and, in the g-context, calculating the quantity

A[FA,FA[a]—g[FA,FAm]}
A[FA’ FAIOL]

Xa(p) = 100[ (6.9)
This is the percentage deviance reduction achieved by condensing the data-set 4 at
the macrolevel p instead of at the arity macrolevel a. By Theorem (6.1), it increases
with increasing fineness of resolution in the macrolevel p, from 0% at p = a to 100 %
at p = 0. From (6.5) and (6.8),

Il

In V—Ent (fA)}. (6.10)

100[ In V—Ent (f,)

Xa(p)

Using (4.47) and (4.48) we obtain the equivalent expression

Xa(p) 100[%@} (6.11)

NIn V4+1,(f4)

Percentage deviance reduction assesses how well F’A|p, the designated macro-
surrogate spectrum at the macrolevels p or g, depicts the suppressed data spectrum
F, by comparing it to data condensation by arity alone. To compute it we need to
calculate the entropy, or equivalently, the likelihood of the suppressed data density.
When the percentage deviance reduction is small we are led to investigate the
possibility of getting a better depiction by data condensation at a finer macrolevel
with correspondingly higher percentage deviance reduction and smaller information
deviance. In the next section we illustrate its use by a numerical example.

6.3. 4 numerical example

Consider the dose-response mortality data of Bliss (1935) which have often been
used for illustrative purposes. For our purposes it is convenient to discuss it within
the framework of the explanatory surrogation leading to the logistic regression
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Table 1. Beetle mortality data (Bliss 1935)

conditional death rates

dose number of number A §
(log,o(CS,/(mg 171))) insects dead actual surrogate
£ F(& ) F (& 1) fa118) fa(118)
1.6907 59 6 0.102  0.119(0.106)
, 1.7342 60 13 0.217  0.175 (0.196)

_ g™ 1.7552 62 18 0.290  0.306 (0.297)
\;i\\\\‘m” 1.7842 56 28 0.500  0.535 (0.530)
p— 1.8113 63 52 0.825  0.781 (0.780)
< 1.8369 59 53 0.898  0.928 (0.928)
> > 1.8610 62 61 0.984  0.981 (0.981)
O =~ 1.8839 60 60 1.000  1.000 1.000
= totals 481 291
= O
E 8 (4.35). The data are presented in the first three columns of table 1. There are 481

cases, 291 deaths and the profiles are the eight doses of the first column. The data
condensation corresponds to the choices

a, (&) =& wu=1,2,..,

so that the condensation of the marginal spectrum F,(-,#) is absent, and

Yi) =8E p), 1<j<J,

where p,, p,, ..., p, are the distinct profiles in the data and § is a Kronecker delta, so
that the condensation of F, (&, -) is F,(§, -) itself. Finally » is 1 or 0 according as the
case is a death or a survivor.

We consider the four explanatory variables 1, £, £* and £ in the three combinations
(i) 1 and &, (ii) 1, & and &2, (iii) 1, &, &% and &3. When we use only 1 and £, the data is
condensed to the number of cases column, namely the one headed F,(&, ), together
with the total number of deaths and the total lethal profile Z£F,(£,1). In the two
other explanatory combinations we successively add into the data condensation the
additional total lethal profiles zngA(g, 1) and £ £2F, (£, 1). The surrogate conditional
death rates in table 1 are the f,(1|£) when 1,& and £ are used as explanatory
variables. The associated numbers in parentheses will be discussed later.

The use of 1 and £ alone as explanatory variables gives 95.4% deviance reduction.
This rises to 98.7% when we add &% to the explanatory set. This confirms the
impression gained from a comparison of the actual conditional rates in table 1 with
their surrogates based on 1, § and £%, namely that the data condensation in question
is quite effective. The classical deviance is then 3.19, slightly less than the 3.45
deviance of Dobson’s (1983) extreme value model. The use of £ as an additional
explanatory variable does not lead to an appreciable improvement in the percentage
deviance reduction, it rises by only 0.1-98.8%. These calculations we performed
using (6.10) with V = 15, not 16, because there are no data survivors at the highest
dosage.
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6.4. The likelihood principle
We can compute a percentage deviance reduction
A[FA,FAW]—A[FA,FA]]
AFy, Fy]

XLFy Byl = 100[ (6.12)

for any depiction [F,, F,] of F, by a possible surrogate F,. As at (6.11) we have

X[F, F’A] =100 [W}

Nln V+14(f4) (6.13)

From (6.3) we can obtain the information deviance A[F,,F,] for any surrogate
spectrum F, once we know the 4-likelihood function lik (- |4). The same is true of
the percentage deviance reduction (6.13). Thus we have the following theorem.

Theorem 6.2. To assess how well a surrogate spectrum depicts the actual spectrum of
the data-set A by means of information deviance it is enough to know the A-likelihood
Junction.

This theorem can be seen as a descriptive version of the likelihood principle. But
it does not endorse a general principle always favouring greater likelihoods, even when
these come from different data-sets. On the contrary the reverse is true for data-sets
within a macroequivalence class. For while F’Alp is the best depiction of F, by a
macrosurrogate spectrum of the p-context, whatever the actual data-set 4, just how
good that depiction is will depend on which of the data sets in the condensing
macrodatum p(D) is the one at hand. Indeed, since Dp  implies that FDlp = Fg, it
follows from (6.3) that when Dp £

Ip(fo) = Ug(fp) < A[Fp, By, = A[Fy, By . (6.14)

In other words, the greater the D-likelihood of f,, as D varies within a p-equivalence
class, the worse the depiction of I}, by F‘Dlp. The data-sets best condensed at level p
are the ones with the least likelihood, and hence the largest entropy, within the p-
equivalence class to which they belong. The disparity between the consequences of
increasing likelihood in (6.4) and (6.14) arises because in (6.4) we consider the A-
likelihood lik (f|4) with A4 fixed but f varying, whereas in (6.14) we are involved with
the D-likelihood lik (f,|D) with D varying within a p-equivalence class. The fact the
data-sets best condensed at level p are the ones with the least likelihood within a p-
class suggests that there might be some advantage in taking p to be the macrolevel
for which the likelihood function is constant within a p-class. The data-set 4 would
then be condensed to its arity and the common value of the likelihood in the class to
which A4 belongs, namely lik (f,]|4). But this leads to an identifiable context. This
follows from the fact that the inequality (4.45) is an equality only when g = f,. Thus
there is then only one density corresponding to the p-class p(4), namely f,, and so
F, is, in principle, recoverable from lik (f,|4) and the arity of 4.

6.5. Concluding remarks

At the beginning of this section we noted that assessment of surrogate performance
involves not only how well we depict the suppressed data spectrum but also how
effective similar condensations might be for other data-sets. In classical statistics it
is difficult to draw a sharp line between these two aspects of data analysis, because
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they are usually treated together. Proximity between the data density and the
modelling density, namely the estimated population density, is seen as indicating a
goodness-of-fit which tells us not only that the modelling density depicts the data
correspondingly well, but also that a similar modelling procedure will be effective,
and produce essentially the same results, for data-sets which are typical random
samples from the population then in question.

Inferential statistics focuses on the sampling distribution of the information
deviance 4[F,, F,, ] when A is regarded as a random sample from a population with
a given density f. Improbably large values of the deviance are seen as discrediting the
hypothesis that the population density is f. This procedure is particularly useful in
the rebuttal of an ill-considered claim that data exhibits some especially noteworthy
features. For if typical random samples from a population without those features
exhibit them to an extent like that in the data, then chance rather than something
substantive might well be seen as a satisfactory explanation of them. The inferential
outlook ig, in part, an anticipatory calculation aimed at showing that such a rebuttal
of what we claim would lack substance. But its. emphasis on an underlying
population makes it difficult to address the data per se, without reference to
mechanisms which might have generated it. Shifting the emphasis from an estimate
of an unknown population density to a surrogate for the suppressed data density
makes it easier to distinguish between questions of inference on the one hand and
those of description on the other. For instance, the question of how close F‘Alp is to
F,, which has been the principal concern in this section, is a question about the
condensation of 4 at macrolevel p and, though we might also be interested in how
our answer to it changes with 4, it is not itself a question about random sampling
from a population.

Although per cent reduction in deviance is a useful indicator, not only of how well
I?'AU, depicts /', but also of the improvements gained and the losses incurred when we
condense 4 at other macrolevels, it does not answer all of the questions that might be
asked about a particular data condensation. For instance, even if the percentage
deviance reduction is high, we might be interested in the possibility of doing better.
If there are relatively few better depictions, then we might settle for what we have
already obtained. If there are relatively many more effective depictions then we
might think it worthwhile to search for one which better suits our purposes. Thus we
might also be interested in the distribution of 4 [1414,17’[,'?] as 7 runs through all the
arity restricted projective macrolevels and determining, in some appropriate limiting
sense, the proportion of 7 < « for which A[lf’é,F’Alf] < A[FA,F'A| ,]- Similarly one might
be interested in the distribution of A[F,,F,,] as A runs through a contextually
relevant family of data-sets. These interests would lead one to the descriptive
methods of Finch (1981); we do not pursue them here.

Instead, we take up the possibility raised at the end of §5.2 and examine another
way of quantifying the amount of information about D which is contained in the
surrogate spectrum F,. This will lead us to consider data condensation by the
projection of In F}, onto a subspace @ as a possible alternative to data condensation
by the projection of Fj, onto @. This sort of data condensation has a number of
attractive features which stem from the fact that the designation equation

PlnF,=PInF, (6.15)

has the unique solution 5
F,=exp{PInF,} (6.16)
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in &(®). This surrogate spectrum is easy to compute and, perhaps more importantly,
since it has an explicit closed form, issues relating to how F, changes with changes
in A and @ are much easier to investigate than are the correspondlng issues for F,.
Moreover in the classical random sampling framework the associated densities fa and
f. are asymptotically equivalent. In particular the surrogate density f, can be
interpreted as a large sample approximation to the ML-estimate in a flat exponential
family. From our descriptive viewpoint, however, the two types of data condensation
arise from different ways of quantifying total information.

7. Metric information

In this section we examine the consequences of measuring total information in
terms of the metric structure of the space ¥ instead of by the simple additions of
equations (5.4) and (5.6). We retain the definition (5.3) but now think of the function
In Fj(x) as an information vector in ¥~ and define the metric information in D to be

D) = | In Ky, (7.1)

namely the norm in #” of the information vector In Fj,. The metric information about
D in the surrogate spectrum Fj, is now defined to be the magnitude of the component
of the information vector In Fy, in the direction of its surrogate In £}, namely

J(D|F,) = J(D) cos {w(Fy, Fy)}, (7.2)

where cos {w(F,,, F,)}, the cosine of the angle between In F,, and In F, is non-negative
because each of those vectors is strictly positive on the support S. From (7.1) and
(7.2) we obtain

J(D|Fy) = (InFy, In Fp)/| In Fy. (7.3)

7.1. Equal metric informativeness

As at (5.7), a surrogation procedure P is said to be equally metric-informative
about p(D) when
JIW'|P(D)} = JAD" | P(D)},V D', D" €p(D),

or, from (7.3), equivalently when
In Fp,—In F,, LIn P(D),YD',D" e < p(D). (7.4)

Such procedures can be characterized by results which are analogues of those in §5.2.
Write
Alp(D)}y ={In Fp, —In F,,,: D", D" € p(D)} (7.5)

for the set of differences of the natural logarithms of the spectra of the data-sets in
p(D) and write

D%p(D)} = [A{p(D)}]* (7.6)
for the subspace orthogonal to it. Then we have

Theorem 7.1. The surrogation procedure P is equally metric-informative about p(D)
if and only if the surrogate spectrum P(D) belongs to the exponential family &[®%p(D)}].

The surrogation procedures P which are simultaneously equally metric-
informative about each p-class are those for which

P(D)e 8[9%p(D)}],YDeD.
Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 29
Write Alp) = U A{pD)} (7.7)
De2
and D(p) = {A(p)}* = N P{p(D)}. (7.8)
De

The surrogation procedures P such that, for each 4 in 2, the surrogate spectrum
P(A4) belongs to the exponential family

EPp)t = N E[P%p(D)}] (7.9)
De2
are simultaneously equally metric informative about each p-equivalence class. Such
procedures are said to fully metric p-informative. A surrogation procedure P is fully
metric p-informative when

VDePD:P(D) =exp (¢p), ¢peD°(p). (7.10)

The elements of the exponential family &{®°(p)} are called the metric-surrogate
spectra of the p-context. As in §5.2 it is parsimonious to use the fully metric p-
informative surrogation procedures, and hence only metric-surrogate spectra, when
one wants to ensure equally metric informativeness.

7.2. Prologjections

Let @ be a subspace of ¥~ and define the macrolevel A on 2 by the logical
equivalence

D'AD" < In Fp—1In Fy, 1 @. (7.11)
This macrolevel can be represented by the condensing statistic
7(D) =P In Fy,. (7.12)
It can also be represented in terms of linearly independent vectors ¢, ¢, ..., Py,
spanning @ by means of the vector-valued condensing statistic
$°(D) = ($o(D), $1(D), ..., 4(D)), (7.13)
where P%(D) = (¢, In Fp), 0<m <M. (7.14)

The condensing statistic # of (7.12) is called a prologjection and the macrolevel A of
(7.11) is said to be prologjective. The following analogue of Theorem (5.2) follows
from the fact that each ¢ in @ belongs to each @°{A(D)} of (7.6)

Theorem 7.2. If A is the prologjective macrolevel corresponding to data condensation
by prologjection onto @, then ®°(A) = P.

When & = {0} any two data-sets in & are A-equivalent. When @ contains the
constant vector 1,

(In Fy, 1) = 3 In Fy(x) (7.15)
N

is constant within each A-equivalence class; we call (In F), 1) the larity of D. When
@ is the subspace of constant vectors we denote the corresponding prologjective
macrolevel by a® and call it the larity macrolevel. Thus D’a’D” means that D’, D"
have the same larity. An arbitrary prologjection is said to be larity-restricted when
its @ contains 1, that is when 9 = «®. When @ = ¥ the prologjection is the symmetry
macrolevel o.

Phil. Trans. R. Soc. Lond. A (1991)
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7.3. Prologjective closure

The arguments of §5.3 can be extended in an obvious way to prologjections. The
smallest prologjective macrolevel containing the macrolevel p is called the
prologjective closure of p and denoted by p°. A prologjection is its own prologjective
closure. The following theorem is the analogue of Theorem 5.3. It is proved by
replacing F;, by In F}, in the proof of that theorem.

Theorem 7.3. The prologjective closure p° of the macrolevel p is the prologjective
macrolevel corresponding to data condensation by prologjection onto the subspace @°(p)

of (7.8).
Similarly we have the following.
Theorem 7.4. If p° is the prologjective closure of the macrolevel p, then
B°(p") = D°(p). (7.16)

Corollary. The metric-surrogate spectra of the p°-context are the same as those of the
p-context.

Theorem 7.5. A p°-computable surrogation procedure is p-computable.

Theorem 7.6. If p is larity-restricted, that is p-equivalent data-sets have the same
larity, then p° is also larity-restricted.

7.4, Consistency in prologjective contexts

Let A be the prologjective macrolevel (7.11) which corresponds to data
condensation by prologjection onto the subspace @. The A-designation equation of
the A-context in the y-representation of (7.12) is

PinF,=PInF,. (7.17)
Its solution is given by the next theorem.

Theorem 7.7. There is a unique surrogate spectrum of the form F, = exp (¢ ,) with
¢4 tn D which satisfies the A-designation equation of the A-context. It is

F,=exp(PInF,). (7.18)

Proof. The surrogate spectrum F, of (7.18) satisfies (7.17). Conversely if F, =
exp (¢,) with ¢, in @ does satisfy (7.18), then

¢ =Pp,=PInF,=PInF,
and so F,=F,

Since A is its own prologjective closure, it can also be represented by prologjection
onto the subspace @°(A). By Theorem 7.7, the A-designation equation of the A-
context in that representation has a unique solution F = exp (¢%) with @% in ¢°(A).
But since @ < @°(A), F, of (7.18) does have that form and so the element ¢% of ®°(A)
then the question is in fact P In F; in @. In other words:

Theorem 7.8. There is a unique metric-surrogate spectrum of the A-context satisfying
the A-designation equation of that context, it is F, of (7.18).

Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 31

Corollary 1. If ¢, ¢, ..., ¢y 18 an orthonormal basis of D, then

F,(x) =exp{§ ('lnFA,¢m)¢m<x>}, zes. (7.19)

m=0
Corollary 2. The unique metric-surrogate spectrum of the A-context minimizes
|In F,—In F,|2 (7.20)
over the set of all the metric-surrogate spectra of that context.

Equation (7.19) gives the designated metric-surrogate spectrum directly. in terms
of the orthonormal condensing statistics ¢9,(4) of equation (7.14). The following
theorem is an immediate consequence of (7.18).

Theorem 7.9. Let @, L @, be two orthogonal subspaces of V" and let @, = D, vV D, be
the smallest subspace containing both of them. Let P, be projection onto @, and let

Fy=exp (B InF,)
be the designated metric-surrogate spectrum corresponding to data condensation by
prologjection onto D,,. Then _ _ _
Ink,,=Ink,+Ink,,. (7.21)

Using (7.21) it is easy to examine not only the effect of adding in further orthogonal
condensing statistics to a given prologjective data condensation but also the
contributions from specified subsets of orthogonal condensing statistics. In
particular, in the context of Corollary 1 to Theorem 7.8 we have

M
InkF,=3% InF,,, nF,,=(nF,¢,)dn. (7.22)
m=0
This gives the individual contributions to F, from the component condensing
statistics ¢9,(4). In practice they can be presented in an informative and easily
understood way by means of the condensing display matrix

[(n Fy, 1) Prn()] (7.23)

with M +1 rows and V columns. When V is large a graph of the rows serves the same
purpose and highlights the ways in which the various condensing statistics affect
different parts of the designated metric-surrogate spectrum.

7.5. Metric-surrogation versus macrosurrogation

The following theorem exhibits the relationship between surrogate designation in
projective contexts and surrogate designation in prologjective contexts.

Theorem 7.10. Let A be the prologjective macrolevel corresponding to data condensation
by prologjection onto the subspace @ and let p be the projective macrolevel corresponding
to data condensation by projection onto the same subspace ®. If F, is the designated
metric-surrogate spectrum of the A-context and F, is the designated macrosurrogate
spectrum of the p-context, then both F, and F, are in &(®) and

F,=F,exp{—PIn (F,/F,)}. (7.24)
Corollary.
F,=F,exp {P'In (F,/F,), (7.25)

where P+ is projection onto D+, the orthogonal complement of .
Phil. Trans. R. Soc. Lond. A (1991)
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Proof. Both In F, and In F, are in &. Thus
InF,—nF,=PImF,~PInF,
=PlnF,—PlnF,
=—P (InF,—In F,).
This is (7.24). To obtain (7.25) we rewrite (7.24) in the form
In (Fy/F,) =In (F,/F,)—P In (F,/F,).
A related result is the following theorem.
Theorem 7.11. If F is any surrogate spectrum in & (D), then

F,=Fexp{PInF,/F}. (7.26)
Proof. We start from
InF,=InF+In (F,/F).

Since In F is in @ and In ¥, = P In F,,

InFy=1InF+PIn (F,/F).
This is (7.26).
We use this theorem to establish Theorem 7.12.

Theorem 7.12. Let f be a density in (D) and let

fa=TF4/ (L) (7.27)
be the designated metric-surrogate density, then
fa=NL"fexp (P In (f,/f)}, (7.28)
where N is the arity of A, L = (1,F,) is its surrogate larity and
NL7' = (1,fexp {P In (f,/f)}) (7.29)

Proof. Put F' = Nf so that F,/F is f,/f. Equations (7.28) and (7.29) follow at once
from (7.26).

The classical consistency of f, when it is regarded as an estimate of an underlying
population density in ¢(®) is a simple consequence of this theorem. For if sampling
is random, sample size increases indefinitely and the population density f is in e(®),
then f, converges to f with probability one. Equation (7.28) shows that under the same
circumstances f, converges to f with probability one. If the population density
J is not in e(®P), then we have the wrong model and f in (7.28) is replaced
by exp (P In f). In this case fA converges with probability one to exp (P In f)/
(1, exp (P In f)). Equation (7.29) with f = fA gives density analogues of (7.24) and
(7.25), namely

fa=NLfy exp {—P In (f,/f.)} (7.30)
and fa=NLf, exp (P In (£, /f.)}. (7.31)

It follows that fyis asymptotlcally equivalent to f 4 18 a classical setting, because
fA/fA is close to 1 when that is true offA/fA

To illustrate some of these results we return to the beetle mortality data in table 1
0f §6.3. The numbers in parentheses in that table are the surrogatc death rates f,(1|£)
derived from F, of (7.18) when @ is the subspace used in the calculation of the
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corresponding macrosurrogate death rates. The proximity of these f; 1]1£) to the
corresponding f a(118) is transparent It is interesting that in seven out of the
elght profiles in table 1 f 4(1]&)is closer to f,(1]&) than is f "(1]£). To compare F, with
F, in this case we can compute the percentage deviance reduction of the depiction
[FA,F ] as given by (6.13). For the data of table 1, this is 98.2%, close to the 98.7%
deviance reduction of the depiction [F,,F,].

From the descriptive viewpoint adopted here metric-surrogation has as much
claim for consideration as does macrosurrogation. The general reasons for using
either of them are much the same and differ only in the way we quantify the concept
of total information. Although macrosurrogation leads to interesting descriptive
interpretations of some of the important concepts of classical statistics, metric-
surrogation has the practical advantages mentioned at the end of §6. Moreover
metric surrogation is easily extended to include data-sets 4 whose spectral supports
S, are proper subsets of the common support S of the surrogate spectra in &(®). To
do so one need only replace the designation equation (7.17) by

PlnF,=Pl,InF,), (7.32)

where [, is the indicator function of S, and, on the right, 0 In 0 is interpreted as 0.
This equation has the unique solution

F,=expP(,InF,) (7.33)
in &(PD).

The results obtained in the earlier subsections of this section are straightforward
mathematical analogues of the corresponding results in §5. But their correctness as
mathematical theorems does not in itself imply that it is equally correct to use them
in data analysis. We see in §9 that there are reasons for preferring macrosurrogation
to metric-surrogation. Nevertheless consistent metric-surrogation retains an in-
dependent interest as a possibly large data-set approximation to consistent
macrosurrogation.

8. Circumstantial condensation

In the preceding sections it was supposed that data condensation arose as a
deliberate attempt to capture the gist of the data in a relatively simple way. There
are also situations in which data condensation arises by force of circumstance, for
instance when analysing the data involves censoring and truncation. We call this
circumstantial condensation and illustrate it by examining surrogation in the
analysis of survival data.

8.1. Survival data

Consider a data-set
A=x,24, ..., 2y, (8.1)

in which each case-reading z, = (7,,,7,) is an ordered pair of non-negative integers
that arises in the following way. The cases are patients who enter a clinical trial at
various times and are followed until they develop an end-point that is certain to
occur sometime and which we will call ‘death’. All times are measured in days and
there is a common time origin day O for all the patients. Case n enters the trial on day
7, and dies 7, days later; the possibility that 5, = 0 is not excluded.

In practice such a clinical trial is analysed before all the patients have died and,
perhaps, before all of them have entered into it. If the data is analysed on day 7', then
one has no reading for a case with 7, > 7 and the cases with 7, <7 fall into two

Phil. Trans. R. Soc. Lond. A (1991)
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categories. For the then deaths, namely the cases with 9,47, < 7T, one has the full
case-reading x, = (9,,7,), but for the then survivors, namely the cases for which
N, > T—71, >0, one has only 7, and the fact that 7, is bigger than 7'—7,. For
simplicity we consider only times 7' which exceed the entry times of all the patients
under consideration. The censoring of lifetimes at time 7' can be viewed as a
projective data condensation in the following way.

The support S, of the data-set 4 is a subset of the non-negative quadrant of the
(g, 7)-plane. At time 7' the points in S, which are on or below the line y+7 =17
correspond to the then deaths and the points in S, which are above that line
correspond to the then survivors. Censoring at time 7' partitions the support S, into
one-point cells on or below the line #+7 = 7T and into cells above that line which are
horizontal strips at the entry times of the survivors. The effect of the censoring is to
condense the data to the number of cases in each cell of the partition. In the next
section we show that this sort of data condensation corresponds to projection of the
data spectrum onto the subspace generated by the indicator functions of the cells of
the partition.

For ease of comparison with standard survival analysis it is convenient to work
with the censoring times {, = 7'—7, and to regard the data-set at time 7' as given by

A=y, Y- Yn (8.2)

where the reading for case n is
Yn = (Nn:€), 1 <n<N. (8.3)

The deaths and survivors correspond to 7, < ¢, and 7, > {, respectively. The
support at time 7' is then a subset of the non-negative quadrant of the (7, {)-plane
and the censoring partitions it into one-point cells on or above the line 9 = ¢ and into
cells below that line which are horizontal strips at the censoring times of the
survivors. In §§8.4 and 8.5 we consider the more general situation in which (8.3) is
replaced by

Tn=En M 8n), 1 <m <N, (8.4)

where §, is a possibly vector-valued explanatory case-profile.

Survival data present additional complications which stem from the nature of the
data support. At time 7', when the data set is given by (8.2), the data support is the
set of distinct (n,{) in the data but these points are not all known at that time,
because of the censoring. We know that the points (5, {) corresponding to the deaths
are in the data-set, but for a survivor with censoring time { we know only that the
corresponding lifetime 9 is a positive integer exceeding {. Thus we are dealing with
a macrostandard context in which the data support is not known. This calls for a
modification of the procedures developed earlier. The simplest modification, and the
one we adopt here, is to remove the restriction that the designated surrogate
spectrum should have the same support as the data spectrum. To do so we consider
surrogate spectra with a given support S which contains the data support S,. In a
projective context involving data condensation by projection of F, onto a vector
space @ of functions on S this means that we look for solutions F, in &(®) to the
designation equations (3.3) when the data spectrum F, is no longer strictly positive
on S.

We suppose that the first patients enter the trial on day 1 so that 0 <7, < 7' and
1 < § < T. Since a lifetime ending on or before day 7' can be at most 7'— 1 days long,
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we truncate lifetimes by 7. In other words, we replace %, in (8.3) by min(y,, 7).
Finally the underlying support § is taken to be the data pairs (y,§) with 5 < ¢,
together with the points in the sets

I'(+,0) ={¢+1,0),(€+2,0,.... (T8 (8.5)

for each {,1 < { < T, which is the censoring time of at least one survivor.

Accounts of clinical trials sometimes report only the lifetimes of the deaths and the
censoring times of the survivors. This corresponds to a partition of S by the
horizontal strips I'(+, ) of (8.5) together with the vertical strips

I, *)={(n,n),@,n+1),....(, 1)} (8.6)

at each n which is the lifetime of at least one death. We see below that this does not
affect the surrogate lifetime density. However, such accounts often fail to report the
value of 7" and in those circumstances it is convenient to take 7' to be its smallest
possible value. In other words, if 4 is the maximum of the min (5, {,), then we take
T = p+1 if there is a survivor with its { = x and take T = u otherwise.

8.2. Condensation by support partitioning

Suppose that the generic support S is partitioned into M non-empty mutually
disjoint cells I, 1, ..., 1"y, which have union § and respective sizes y;,V,, ..., V-
Let ¢,, be the indicator function of the cell I',,, they are mutually orthogonal and
|Pml? = Vo, let @ be the subspace of V which they generate.

Consider the condensation of a data set 4 with support §, < 8§ by the projection
of its spectrum #, onto @. In the representation determined by the orthogonal basis
vectors ¢, @, ..., Py, the condensing statistic

Pu(A) = (P, Fa) = FZFA(x) = F,(I'y,) (8.7)

is the number of data readings in the cell I',,. Thus data condensation by the
projection of ¥, onto @ corresponds to grouping the data by the cells of the partition
and recording only the multiplicities of the readings in them.

The surrogate spectra in & (@) have the form G(x) = exp ¢(x) with

b= 3 (b bn) 72 bn (53)

constant within each cell of the partition. If such a spectrum satisfies the designation
equations (¢@,,, @) = (¢, F4), 1 <m <M, then

Fy(ly) = (¢, G) = Y exp (. §) Y}, 1 S m <M. (8.9)

If each cell of the partition is represented in the data set, then each #,(I,,) is positive
and these equations determine the (¢, ¢,,) and hence, from (8.8), the vector ¢. In this
case there is a unique solution from &(®) to the designation equations. It is constant
within cells and is given in I',, by

Fy(@) = vl Fa(Ty), @€l (8.10)
The corresponding density is

fatw) = vl falp), w€ly, (8.11)
where f,(I,) is the data density of readings in I',,. In other words, in each cell of the
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36 P.D. Finch

partition the designated macrosurrogate spectrum and density are the arithmetic
means of the corresponding data quantities in that cell. This type of data con-
densation was discussed in ad hoc ways in Finch (1977, 1980q, b, 1982a).

With #, given by (8.10) we have (¢,,, F) = F(I',,) even if F,(I',,) is 0. Thus F,(x)
of (8.10) is a solution to the designation equations even when some of the cells are not
represented in the data. But in that case its support is the union of the cells that are
represented in the data and it does not belong to the exponential family & (®), except
in a limiting sense at infinity. This may be seen from (8.9) which gives (¢, ¢,,) = —©
when F,(I',) = 0.

One could also condense the data by prologjection onto @. The condensing
statistics would then be

$2(4) = (P Ly In Fy) = In [n {Fm)}w], (8.12)
Ty,

where I, is the indicator function of S, the support of 4. A short calculation shows
that the designated metric-surrogate spectrum is also constant within cells and is
given in I',, by

F(x) = [H {FA(x)}IAm]wm, xel’,,, (8.13)
rm

namely by the geometric mean of the data spectrum in that cell. The corresponding
density is

v

1/ym
falx) = [H {fA(x)}IAm] ! , xel,,. (8.14)
rm

The metric-surrogate density F, of (8.12) is in &(®) and has support S even when

some cells of the partition are not represented in the data. For if the cell I',, is not

represented in the data then (8.13) gives F,(x) = 1 because 0° = exp (0 In 0) is to be

interpreted as 1. Metric surrogation is not available in the context of survival data

because the censoring produces the condensing statistics (8.7), not those of (8.12).
The deviance reduction associated with FA of (8.10) is

AF,, By — AR, Fy] = In V—Ent (f,), (8.15)
M
where V=2 v, (8.16)
m=1
is the size of S and
M
Ent (f4) = 2 fu(ly){Iny,—In f4(I,)}. (8.17)
m=1

When the data condensation is circumstantial we cannot compute the percentage
deviance reduction of (6.10) because the actual density f, is not then known. In such
cases the deviance reduction associated with a partition is informative when one
wants to assess the gain in moving from one given partition to a finer one. We
illustrate this in §8.4.

8.3. Surrogate survival

We now apply the results just obtained to the partition of the subset S of the
(7, §)-plane associated with the censoring of lifetimes by the analysis of survival data
at time 7'. The underlying support S is partitioned into the one-point data pairs (%, &)
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Model-free data condensation 37

with # < { and the sets I'(+, ) of (8.5), and each cell of this partition is represented
in the data. From (8.11) the designated macrosurrogate density is f given on S by

fn.0 =f(.0), 7 SC,} (8.18)
=f(+.9/(T'=¢, n>¢

where f is the data density and f(+, {) is the proportion of cases in the data that are
survivors with censoring time §. Writing f(», *) for the proportion of cases in the data
that are deaths at lifetime #, namely the sum of the f(#, {) over the { with (,{) in S
and { > 7, equation (8.18) shows that the surrogate marginal density for # is

3 f(+.9

fr. ) = f(n, HEM ey

where 7 is the lifetime of at least one point in § and summation is over those { with
(7,¢)in S and < 9. If 5 is not the lifetime of at least one point in the support S, then
Sy, ) is 0. From (8.19) we can obtain the corresponding surrogate survival function

Sm= 3 fur,-). (8.20)

e

(8.19)

This is essentially the flat survival function of Finch (1977) where the under-
lying support S was the rectangle of all the integer pairs (,{) with 0 <5 <7 and
1<¢<T.

If § is partitioned both by the I'(+, {) of (8.5) and the I'(5, %) of (8.6), then the first
part of equation (8.18) is replaced by

[, = fon, 0/ (T—y+1), 9<¢& (8.21)

In this case we obtain the same surrogate marginal lifetime density as before, namely
(8.19).

If there are no survivors, then (8.18) gives fzf whereas (8.21) spreads f(7, %)
uniformly across the cell I'(y, *). In both cases f(y, *) = f(, *).

In figure 1, the surrogate survival function (8.20) is compared to the Kaplan—Meier
survival function for the treatment group of the data considered in the next section.
As that figure shows, surrogate survival along the tail is less optimistic than the
corresponding Kaplan—Meier estimate. The Kaplan—-Meier survival function would
arise as a surrogate survival function if one partitioned S by the I'(+, {) of (8.5) and
the I'(y, *) of (8.6) and used a consistent surrogate density g with the independence
property

9.8 =9m, )9, &) (8.22)
on S.

To see this let Y(f) be the subset of S consisting of the (7, ¢) in S with 5 > t and let
Z(t) be the set of the (9, {) in S with { > ¢. Let R(t) be the set intersection of Y(¢) and
Z(t). Writing g(B) for the sum of the g(», {) over a subset B of S, equation (8.22) gives

giR ()} = glY (1)} giZ (1)} (8:23)
Noting that the set of (,§) in S with » > ¢+1 and { > t is R(t)—D(t) with
D@t) ={Y(@)—Y(+1)} n Z(t), (8.24)

equation (8.22) also gives

giR(t) —D(t)} = g{Y (t+ 1)} g{Z(1)}. (8.25)
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 1. Surrogate and Kaplan—Meier survival functions for the treatment group of table 2.

If g{R(t)} # 0, then equations (8.23) and (8.25) give

gY(t+1)} = [1—giD(t)}/giR(t)}] g{Y (1)} (8.26)
But giR(t)} = X g(n, %)+ X g(+.,8)
n=t &>t

and if ¢ is consistent, then
9(77’*) =f(77’*)’ g(+’§) :f(+’§)a
and hence gR(t)} = fAR()} (8.27)

can be calculated from the data condensation, namely the multiplicities in the cells
of the partition. Moreover D(t) of (8.24) is the set of data deaths at lifetime ¢ and so

giD()} = g(t, *) = f(t, ¥) = AD(t)}. (8.28)
Thus equation (8.26) gives
glY(t+ 1)} = [1=AD@®)}/AROH g{Y (D)} (8.29)

This is the well-known recurrence relation for the Kaplan—Meier survival function
and so, under the independence constraint (8.22), the surrogate survival function is
the Kaplan—Meier survival function.

From (8.23) we obtain the g{Z(¢)} and hence the individual g(%, {) from (8.22). This
bivariate density may vary within the cells of the partition and so it is not, in general,
a macrosurrogate density for the projective context based on those cells. It is,
however, a macrosurrogate density for the macrostandard context derived from that
projective context by adding to it the independence condition (8.22) as a contextual
constraint. This would be the appropriate context when it is known that the actual
data density fitself has the independence property (8.22). In that case, the argument
leading to (8.29) from (8.22), with ¢ replaced by f, shows that the Kaplan—Meier
estimate of the survival function is then the data survival function.

Phil. Trans. R. Soc. Lond. A (1991)
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Model-free data condensation 39

It is worth noting that any consistent surrogate density ¢(7, {) leads to a produect
formula like (8.29) for its associated survival function, whether or not it has-the
independence property (8.22). For writing

a straightforward argument shows that the analogue of equation (8.29) is
ﬂDUH—ﬂDMq ;

E@ i) " (550
for those ¢ with f{iRR(¢)} > y{R(#)}. In (8.30) we always have f{R(¢)} = y{R(¢)} because
AR} =7R(O)} = giR ()} —ViR(O)} = glY (1)} g{Z (1)} = 0

Similarly we always have fiD(¢)} = y{D(t)}. In like manner, writing

e, &) =fn, ) —f(n, ) f(+,

. SD( e{D(t)
we obtain Yit+1)} = [1———————— 8.31
S+ RO RY( (8.31)
Since f{D(t)}—elD()} is fit, ) fAZ(t)} and f{R —e{R (&)} is AY ()} fZ(t)}, equation
(8.31) simply states that f{Y (¢ +1)} is f{Y(¢)} minus f(¢, +). It does, however, display the
way in which the data survival function differs from 1ts Kaplan—Meier counterpart
in the absence of independence, namely when the e¢{D(¢)} and the ¢{R(f)} are not all
Zero. :

gY(E+1)} = [1—

8.4. Comparison of surrogate survival in two groups

Suppose now that there are two groups of patients, ((0) and G(1), and that
correspondingly the readings take the form (8.4) where § is a binary 0, 1 variable
specifying group membership, and allow for the possibility that 7' has different
values for the two groups, 7'(0) in G(0) and 7'(1) in G(1). The support S consists of two
sheets of the (7, {)-plane, one sheet for each group. Suppose it is partitioned by the
cells

ng+n©={@ngrn=§+né+z“qT@m} 5.32)
L& n. %) =& 9. 0):{=nn+1,....TE)

The data is condensed to the number of cases in each cell of the partition; namely
for each group, to the number of survivors and the number of deaths at each of the
censorlng times and lifetimes in question. From (8.11), the designated macrosurrogate
density is f given on S by

femo = e e 5% (8.33)

Thus the surrogate bivariate density for group membership and lifetime is
e p ) = J€& +.9)
S, ) = f(&m, % )+§§”{T H_¢

Sincef(g,ﬁ, x) = f(&, 9, *) andf(g, +,0)is f(§, +,0), we havef(g, )y =f(§ +, ) and so

the surrogate conditional density for lifetimes given group membership is

foley=fie.n, )/fE -, ). (8.35)

Phil. Trans. R. Soc. Lond. A (1991)
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40 P.D. Finch

Table 2. Times in weeks of remission of leukemia patients (Cox 1972)
drug 6-MP 6%, 6, 6, 6, 7, 9%, 10*, 10, 11%*, 13, 16, 17*, 19%, 20*, 22, 23,
25%, 32%, 32%, 34%*, 35.
control 1,1,2,2,3,4,4,5,5,8, 8,8, 8, 11, 11, 12, 12, 15, 17, 22, 23.

In practice the two groups usually arise from two different treatments and it is
pertinent whether survival under one of the treatments is better than it is under the
other. In classical statistics this question is formulated as a test of the hypothesis of
no difference between the survival experience in two underlying population groups.
In the descriptive framework of this paper, the question has to do with how much
better one does by surrogation based on the two-sheet partition of (8.32) than by
ignoring group membership and basing it instead on the one-sheet partition of (8.5)
and (8.6). It may be investigated by comparing the deviance reductions associated
with the two partitions, namely the quantities given by (8.15). By way of illustration
we consider the well-known survival data in table 2. For that data the one-sheet
partition achieves a deviance reduction of 0.215 whereas that of the two-sheet
partition is 0.522, about 2.4 times as great a reduction in the deviance. This suggests
that group membership plays a useful role in analysing the data, namely that the
data is appreciably better described by calculating different surrogate survival
functions for the two groups than by one such function for the combined group. It
should be noted that the issue addressed in this analysis is whether the actual
patients in the trial had different survival experiences according to the treatment
they received; not whether the two groups came from corresponding populations
with different survival experience.

8.5. Surrogate survival with profile averaging

In this section we consider surrogate survival with an explanatory case-profile as
at (8.4). The data-set has the form 4 = r,r,...ry where r,, the reading for case n, is
an ordered triple (£,,7,,¢,) with £, its profile, 5, its truncated lifetime, 0 <y, < 7,
and {, its censoring time, 1 < ¢, < 7. Let X be the set of distinct profiles in the
data. The generic support S is taken to be

S={(x,y,2):2eX,0<y<T,1<z<T} (8.36)
where the y and z in question are integers, and it is partitioned by the sets
= M >
Iy, %) ={(z,y,2):xe X &x > 2}, (8.37)
I'(+.,2) ={(z,y,2):xeX &y > z}.

Data readings in I'(y, *) correspond to deaths with lifetime y and those in I'(+,z)
correspond to survivors with censoring time z. The profiles in X are typically real
vectors

= (%, %y, ..., %g) (8.38)

of variables that might explain case differences in survival and, correspondingly,
interest focuses on the dependence of lifetime on explanatory profile as displayed by

S 1t()), the surrogate conditional density for lifetime given a function of the profile.
A detailed case-study of this sort of survival analysis and its comparison with more
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Model-free data condensation 41

familiar procedures will be presented elsewhere. Here we illustrate the general
method by condensing the data to the cell multiplicities association with the
partition (8.37) and certain profile averages.

To construct the data condensation let ¢? and ¢5 be the indicator functions of
I'(y,*) and I'(+,z2) respectively. Let m,, v =0,1,...,U be linearly independent
functions on X and put

Ya&n. Q) =m, ) Hn. 0, o€ n. 0 =mE{l—H O} (8.39)

where H(y, z) is 1 when y < z and 0 otherwise. Let @ be the subspace spanned by the

4 ¢, ¥% and 5, and condense the data by projecting its spectrum onto @. The
associated real-valued condensing statistics are (i) the number of data deaths at each
support lifetime,

(B9, Fy) = Fll(y, %)}, 0<y<T, (8.40)
and (ii) the number of data survivors at each support censoring time,
(93, Fa) = F,{I(+,2)}, 1<z<T, (8.41)
together with (iii) the aggregate lethal profiles
Yo F) = X m)Fy(xy,2), 0<u<U, (8.42)
z,y<z

and (iv) the aggregate survival profiles

W5 Fy)= 2 m(x)Fy(x,y,2), 0<u<U. (8.43)
T, Yy>z
Writing I'x)y= U Iy.*),I(+)= U I(+,2),
0<y<T 1<z<T

the number of data deaths,
T
F (%)} = ZF Iy, *)},
0

is obtained from the condensing statistics (8.40), and the number of data survivors,

T-1

FAI(+)} = Z FiI(+,2)}

is obtained from the condensing statistics (8.41). Thus (Y%, F,)/F,{I(x)} is the
average value of m,(x) over the profiles of the data deaths and (5, F,)/F {I'(+)} is
the average value of m,(x) over the profiles of the data survivors.

For example if the profiles are given by (8.38) and m,(x) = z,, then (Y%, F,)/
FAI(x)} and (Y5, F,)/F{(+)} are the means of the variable x, over deaths and
survivors. Similarly if 7, (x) = x;2;, then the condensing statistics (8.42) and (8.43)
give the corresponding death and survival correlations of the explanatory variables
x; and ;.

In the]projective context described above the designated macrosurrogate spectrum
is given on S by an expression of the form

P&, ©) = exp [S{by g+ g+ v+ Lyl
where the constants b2, b5, ¢Z and ¢, are determined by the designation equations,
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42 P.D. Finch

namely the four equations for the condensing statistic with F replacing F, on their
left-hand sides. Because of the special forms of the vectors ¢Z, etc., we have

P98 =expd?+Zcim, ()}, 7<¢
=exp{Bi+Xm, &)} n>¢

The constants b¢ and b3 can be eliminated by using the first two designation
equations, namely

exp (bY) T exp {Zcdm, ()} = F{l(n, %)}/ (T—y+1),
exp (bf) X exp {X ¢}, m,(x)} = F{I(+, " )}/(T—§).
Writing Af)=Xcim (&), o) =Xcm,(é), (8.44)

and using densities instead of spectra, we obtain

_ fall (g, %)} @
fien.0 = (T—p+1) (1, e’

LT ) ®
~Ca-o wey 178

where (1,6 = T exp {A(x)}, (1,e%) =3 exp {o(x)}

7 < ¢,
(8.45)

are inner products in the vector space of real functions on X. In particular

S fE1,0 = faI(%) €9/(1,¢,

<
S fEn, &) = fAT(+)eO/(1,e7)
7>¢
and AO/(1,eh) = flEln <O, e@/(1,e) = fiEln > Q)

are the surrogate conditional densities for profiles within deaths and survivors
respectively. Finally the constants ¢Z and ¢, in (8.44) are obtained by solving the two
remaining designation equations, namely

W Fa) = FA{F(*)}Zﬂu(w) e'®/(1,e"),
(Vs Fa) = FI'(+ }Eﬂ )e"@/(1,e7).

The surrogate bivariate density for profiles and lifetimes is

e® fall(+, 0} e7®

f&m. ) =fdro, Vet EE 028 W (8.47)
and the surrogate marginal density for profiles alone is
er® e7®
A& o) = fall 1 +fA }(1’ ot (8.47)
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The ratio of these two quantities is f('r;|§) the surrogate conditional density for
lifetimes given the profile £ and from it one can calculate a corresponding surrogate
conditional survival function.

9. Foundations of data analysis

In the preceding sections the term ‘data’ has been used in the conventional sense
of classical statistics. Now we examine the collection of data and its condensation at
the deeper foundational level of Finch (1980c¢) to show that macrosurrogate spectra
arise from computability, without appeal to equal informativeness, when data
collection is non-disturbing in the precise sense defined below. While this adds little
to the practical implementation of the data condensation procedures developed
above, it does show that there is less room for developing alternative procedures than
might appear at first sight. In a strictly logical approach the material of this section
would be presented first and the preceding development modified accordingly.

9.1. Pointers, readers and systems

We examine the structure of data in terms of pointer-readings, namely the
readings obtained by observational procedures which we call pointers. We start with
two non-empty sets P and R whose elements are called unary pointers and unary
readings respectively. An n-ary pointer is an ordered list p = p; p, ... p,, of n unary
pointers. It denotes the consecutive use of its component unary pointers in the order
P1s Pas -+ » P Similarly an n-ary reading is an ordered list r = v, 7,... 7, of n unary
readings. An n-ary pointer-reading is an ordered pair (p,r) consisting of an n-ary
pointer p = p, p, ... p,, and an n-ary reading r = r,r,...r,, where each component
7, is the unary reading on the corresponding unary pointer p,. This interpretation of
pointers and readings requires that their left-to-right ordering has a corresponding
before-after temporal meaning and so, as in Finch (1980c¢), we should incorporate
into the framework the times at which unary pointers are read. For our purposes
here, however, it is sufficient to suppose that we are dealing with situations in which
what we observe does not depend on when we observe it.

For brevity we refer to pointers and readings of arbitrary arity as multiple pointers
and multiple readings. The set of all multiple readings is denoted by P, and R,
denotes the set of all multiple readings. If p and ¢ are multiple pointers, then we write
g <p and say that p=p;p,...p, extends ¢, or that ¢ subtends p, when ¢ =
Dy Pys -+ Py, fOr some m < n. Similarly we write ¢ < r when the multiple reading
extends the multiple reading ¢. If p = p,p,...p,, and ¢ =¢,¢,...q, are multiple
pointers, then the multiple pointer pg = p; P, ... 9, 9145 --- ¢, is called the ordered
juxtaposition of p and ¢. Similarly, 7t denotes the ordered juxtaposition of the
readings r and ¢.

From the viewpoint adopted here, the specification of a practical situation
involves, inter alia, the enumeration of the multiple pointers which might then be
used. The formal counterpart to this enumeration is called a system. This is a non-
empty subset Q of P, such that all the subtending stages of a multiple pointer in
are themselves in Q, in other words

peR&qg<p=>qefl. (9.1)

It is an object that is defined by a set of possible observational procedures, any of
which could be the one actually used on a given occasion. When we do observe the
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44 P.D. Finch

system €2 with a pointer p in £ we obtain a corresponding reading r. The set of all
pointer-readings (p,r), with p in € and r the corresponding reading when £ is
observed with p, is denoted by PR(£2). Strictly speaking the » just mentioned names
the reading which would be displayed by p because, in general, we observe a system
with only one pointer. We suppose both that a pointer in £ does not lead to more
than one reading, that is

(p,7) & (p, 7)€ PR(Q) = 1" = 1", (9.2)

and that the readings obtained from earlier stages of observation are not changed by
later stages, that is
(q,t), (p,")ePR(Q)&g<p=>t<r. (9.3)

It follows from (9.2) that the ordered pairs in PR(£2) determine a function s: Q2 —~R,,.
We write the functional symbol s to the right of its argument, so that ps denotes the
unique reading for which (p, ps) is in PR(£). We say that s is the state of the system
Q. It follows from (9.3) that s preserves extension as well as arity. Any function from
Q to R, which preserves arity and extension is a possible state of Q.

9.2. Observational disturbances and classical systems

For p in the system €, let €, be the set of multiple pointers g such that pq is also
in Q. If 2, is not empty, then it has the property (9.1) and is itself a system; it is
called the conditional system determined by p. We say that p is terminal in 2 when
Q,, is the empty set. For a non-terminal p and a state s of Q, we define the function
Sip: 2 = Ry, with domain Q,,,, by decreeing that, for each ¢ in Q,, gs,, is the unique
reading in R, for which

|p?

(pq) s = (Ps)(g5p)- (9.4)

It is easily verified that s, preserves arity and extension, and it is therefore a state
of Q.

An ordered pair (£, s) conceptualizes the idea of a system £ in a given state s. It
is a deterministic concept because the system is defined by finite sequences of possible
future observations and its state names the readings associated with each of them.
When we observe w in the state s with a non-terminal pointer p, the extensions of p
in £ determine a new system €2, and a new state s,,. Thus, in general, observation
is accompanied by two disturbances: a change of system Q€ and a change of
state s—>s,. If Q, # Q, then s, # s because the two states are functions with
different domains. But even if Q,, = Q, then we will have s, # s when there is ¢ in
Q2 with gs;,, # gs. It is sometimes convenient to write sp for the state s,. Since s,q¢ =
Sipg» We have

(sp)q = s(pq) (9.5)

and, by an obvious extension of (9.4),

(P1Dg -+ Dy) S = (D18) (D2 SD1)(P3 " SP1D2) - (P SP1Ps -+ Pu1)s (9.6)

where p,, 8p, s ... Pp_y is the unary reading from the unary pointer p,, when the
state in question is sp; Py ... Py

A state s of the system Q is said to be classical when sp = s for each p in Q.
This means two things. Firstly, the states sp and s have the same domain, that is
Q,, = £, and hence that 2 = @, the set of all finite strings generated by @, the set of all
the unary pointers belonging to €. Such systems are said to be simple systems. Only
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simple systems admit classical states. Secondly, g(sp) = ¢s for all ¢ and p in Q, and
so, from (9.6),

(P1D2 - Dy) 8 = (P18)(P28) - (Dy 8)- 9.7)

A simple system in a classical state is not disturbed by observation and, as shown by
(9.7), the reading on a component unary pointer does not depend on what, if any,
other unary pointers precede it.

Non-classical states occur explicitly in quantum mechanics (see, for example,
Finch 19820, 1984) and implicitly elsewhere, for instance in psychological
experiments where a subject’s response to a particular stimulus may depend on what
other stimuli he has already experienced. But classical statistics has focused in the
main on systems that can be considered, at least to a first approximation, as simple
systems in classical states. This results in a number of important simplifications.
Equation (9.7) shows that a classical state s of the simple system @, is determined
by its associated unary state sU = s| @, namely the restriction of the general state s
to the set @ of its unary pointers. In particular, the system @, in the classical state
s can be thought of as the ordered pair (¢, sU). In other words, the concept of a simple
system in a classical state reduces to the familiar idea of a population of readings,
namely the indexed set of unary readings {gs:g€ @}, and hence to the idea of a data-
set as defined at the beginning of the paper.

It is only a short step from the population concept to thinking of the unary
readings ¢s as things which characterize the system ¢, in the state s, independently
of whether or not we observe it. But that step fails to distinguish between what does
not depend on how we observe it and what does not depend on whether we observe
it. Strictly speaking, we are still involved with sequential observation when we are
dealing with a simple system in a classical state because it is implicitly assumed that
repetitions of some or all of the observations will lead to the same readings, at least
to a first approximation.

Conversely a population of readings (¢, sU) may be thought of as a simple system
in a classical state when each unary reading gs can be regarded as a fixed reading
which is the reading on ¢ at every occurrence of it, when we observe the system @,
with a multiple pointer containing one or more occurrences of ¢ as a component
unary pointer.

9.3. Indeterminism

It was shown in Finch (1980¢) that any system can be regarded as a simply system
with an absorbing barrier. In what follows, therefore, we consider a simple system
@4 and for simplicity we suppose that its generating set of unary pointers @ =
{41, 92, --- » @} 1s a finite set. If @ is in the state s, then all the possible observationally
induced states are determined, they are the sp with p in €. Similarly, all the possible
future readings are determined, they are the readings ¢(sp) with both p and ¢ in @,.
In practice, however, the framework is indeterminate because certain states are
indistinguishable at the observation level of practical enquiry. For while the actual
state, @ say, is a blueprint for what would be observed in all the observational futures
in question, we are usually restricted to the use of a single observing pointer ¢ in Q.
Even though we observe the reading r =qa we cannot, in general, thereby
distinguish between the actual state @ and other states s for which the corresponding
reading ¢s is also 7. In general, we can only name the actual state incompletely by
saying that it is one of the states for which the reading given by observation with ¢
is the one actually obtained. Thus indeterminism is the norm; it is its absence that

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

e

R
\
 \
P

/

\
L
/[

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

46 P. D. Finch

is exceptional, not its presence. It is absent when the actual state is known to be
classical and the observing pointer ¢ is ¢, ¢, ... ¢y, because the observed reading is
then r, 7, ... 7y with 7, = ¢, a. This determines the unary state aU and the full state
@ is then recoverable from the multiplicative formula (9.7). But, as we have seen
earlier, even in this special case we might be restricted by choice, economy or force
of circumstance to working with a summarizing condensation of the observed
reading. Such condensations can also be used when the actual state is not classical.

Condensation for simple systems in possibly non-classical states can be formulated
in a way which parallels our earlier discussion by noting that if the state is s and the
observing pointer is g, then the associated reading ¢s is in B, and may be condensed
to 8(gs) by means of a condensing statistic d, as defined in §1. The condensing statistic
d again determines a macrolevel, namely the equivalence p = 6716 on R,, and this,
together with the observing pointer ¢, determine the equivalence I, , on the set of
states under consideration which is given by the expression

s'1, 8" <> (g5") p(gs”). (9.8)

States which are I, -equivalent are indistinguishable at macrolevel p when the
observing pointer is g.

While data condensation for systems in non-classical states is not our primary
interest here, there are some general aspects of it which have bearing on the classical
case. When the system @, is in a classical state s, interest focuses on the data
spectrum, namely the multiplicities of the unary readings in the data-set

Qs=q,95.--qn S = (4,5)(q58) --. (qn S)- (9.9)

The data spectrum F,, condenses the unary state sU: @ — R by replacing it with the
function Fy, on R for which F(r) is the number of pointers ¢ in ¢ such that gs = r.
But in the non-classical case the state of the system is no longer determined by its
unary version and so, by itself, the data spectrum tells us little about the state of the
system. The analogue of the data spectrum for the system @, in a non-classical state
s is the condensation of the function s: @, — R, given by the function K, on R, for
which K (r) is the number of pointers ¢ in €, such that gs is r in B,. We call K, the
spectrum of the state s. Its support B is the set of » in R, at which K (r) #0. If R,
is the set of n-ary readings in R,, then

Y K, (r) = N (9.10)
Rn
The spectral density of the state s is the function &, on R, given by ky(r) = K (r)/N*®,
where a(r) is the arity of . From (9.10)
Sk(r)=1, n>1. 9.11)
Rﬂ

When we are dealing with unary readings the spectrum and spectral density of the
state s reduce to the data spectrum and data density, that is

VreR:K(r) = Fy(r), ky(r) = fos(r). (9.12)
If the state s is classical, then it follows from (9.7) that

K (riry...r,) = K (r)) Kr,) ... Ky (r,),
} (9.13)
ks(rl 72 rn) = ks(rl) k's(rz) ks(rn)'
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These multiplicative rules for classical states should not be confused with the
question of independence between variables. For instance, suppose the unary

readings are themselves m-dimensional vectors (z;,%,,...,z,). For each j=
1,2, ..., mwe can construct the marginal density f ), for the component variable x; from
the fos(xy, 2y, ..., ,,) by summing over all the x; with 7 # j. The component variables

of the unary readings are independently distributed in the state s when

st(xl’xz: 7xm) = (ng(xl) (st?(xz) &)(xm)

This is quite a different requirement from (9.13) which comes simply from the fact
that the state s there in question is a classical state.

For each positive integer n, the spectral density k, of the state s is a density with
finite support on the set of n-ary readings R,. When s is a classical state, it follows
from (9.13) and (4.46) that the likelihood of k; at the multiple reading »,7,...7, in
the range of s is the value of k, at that reading; that is

lik (kg|ry7g...7y) = kg(ry7g...7p). (9.14)

Thus the phenomenological interpretation of the likelihood defined by (4.46) comes
from the corresponding meaning of the spectral density of a classical state. For a non-
classical we define the likelihood of k, by equation (9.14).

Suppose that the actual state of the system @, is the possibly non-classical state
a. When we observe @, with the multiple pointer ¢ in @, and condense the reading
on it at macrolevel p, the data condensation is d(ga). The analogue of the procedure
developed in the preceding sections is to talk about the system @, by means of a
surrogate for the spectrum of its actual but unknown state which is computable from
the condensation &(qa). Surrogate state spectra are discussed in the next section. For
simplicity we suppose that arity is part of the condensation.

9.4. Surrogate state spectra

A surrogate for the spectrum K, of the state s of @, is a non-negative function K
on R, with the same support as K, and such that

Vo>1:3K(r)=N" (9.15)
Ry,
An argument like that in §5.1 suggests that we should use a surrogate spectrum
which has the same value at readings which are indistinguishable at the macrolevel
of the condensation; in other words, that K should be such that

8(r') = 8(r") = K(r') = K(r"). (9.16)

For if 8(r') = 8(r") but K(+') # K(r"), then the condensing statistic y given on R, by
p(r) = (8(r), K(r)) would distinguish between the p-equivalent readings »" and »”, and
thereby call into question the correct identification of the macrolevel at which we
were working. In what follows we suppose that a surrogate state spectrum based on
the condensing statistic § does have the property (9.16).

When the actual state is known to be classical, equation (9.13) suggests that its
surrogate spectrum should have the multiplicative property

K(ryry...ry) =K(r)K(ry) ... K(r,), n>1, (9.17)

because the actual state spectrum for which K is to deputize does have that property.
We accordingly adopt (9.17) when we are dealing with classical states.
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It follows from (9.16) and (9.17) that when the observing pointer is ¢, ¢, ... ¢y, a
surrogate K for a classical state spectrum K, of the system @, is given on its unary
support S = B, N R, namely the support of the data-set s of (9.9), by the expression

VaeeS:K(x) = NZ()} Yexp y(x), ye¥, (9.18)
where ZY) = X exp Y(x), (9.19)
S

and ¥ is the vector space of solutions to a system of linear equations determined
by the condensing statistic. For the exponential form of (9.18) is trivially true with
Y¥(z) = In{CK(x)} where the constant C' is determined from equation

Z() = T exp (x) = CL K(x) = ON.
S S

Equation (9.17) then shows that, for any N-ary data-set D= r,...7, with
support S,

R(D) = NMZ()y™ exp [ Fy(x) ¥ (2)]. (9.20)

Finally, if ¢, is the zeta function of the macrolevel p = 6714, that is {,(D’,D") is 1
when D’pD” and is 0 otherwise, then (9.16) gives

&, D") ZAFy () = Fp (@)} (%) = 0 (9.21)

and ¥in (9.18) is the vector subspace of solutions to this system of linear equations.
It follows from (9.21) that
¥ =P(p),

where @(p) is the vector space of (5.13). Thus the unary restrictions of the surrogate
spectra for classical states are the macrosurrogate spectra of (5.15). This results from
(9.16) and (9.17) without invoking equal informativeness as presented in §5.2. If one
adopts (9.16) and (9.17), then equal informativeness in the sense of (5.7) is a theorem,
rather than an ad hoc principle, and one does not need to appeal to parsimony to
justify the use of macrosurrogate spectra. The implication (9.16) is equivalent to
requiring that on &(Kj), .
K(r) = H{(r)}
is a function of the condensation of the multiple reading » and hence computable
from it. This requirement is plausible because the underlying assumption is that
multiple readings with the same condensation are being treated as if they were
indistinguishable. Ievertheless it is difficult to argue that surrogate state spectra
satisfying (9.16) are the only ones which are useful in practice. On the other hand, the
use of a surrogate spectrum for a classical state which did not have the multiplicative
property (9.17) would seem to conflict with the fact that the system in question was
in a classical state. It follows from (9.17) that the associated surrogate state spectral
density is also multiplicative, that is
k(ryrg...ry) = k(r) k(ry) ... k(r,),
and so it follows from (4.46) that, as at (9.14),

lik (k(|ry7g...7,) = k(riry...7,).
Phil. Trans. R. Soc. Lond. A (1991)
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It follows from (9.21) that the surrogate spectra (9.18) are the same as those which
would arise if the condensing statistic J is the projection 6(D) = Py F},. Since ¥ =
@D(p), this is the corollary to Theorem 5.4. If the condensing statistic § is a
prologjection, however, the results of this section suggest that one should use
surrogate spectra which are macrosurrogate spectra for its projective closure & and
not its metric-surrogate spectra. Thus the mathematical truth of the corollary to
Theorem 7.4 does not mean that it is necessarily correct to use it in practice in the
way suggested implicitly by the discussion in §7. In other words, as mentioned at the
end of §7, the results of this section point to macrosurrogation rather than to metric-
surrogation.

Finally we return to the point mentioned at the end of §4.6 wis-a-vis the
formulation of the explanatory surrogation then under consideration as a generalized
linear model and what we then called the natural link function. If we adopt (9.16) and
(9.17), then we may use only the surrogate spectra in &(®) and, correspondingly, we
must then use the natural link function. The use of other link functions to construct
surrogate spectra would violate (9.16). This does not mean, of course, that such
surrogate spectra cannot be useful in practice.

9.5. Concluding remarks

If a pointer is chosen at random from the set of n-ary pointers in ¢, when that
system is in the state s, then kg (r, 7, ... r,) is the probability that the reading on that
pointer is 7,7, ...7,. In such a sampling context it is little more than a matter of
taste whether one calls k, a state spectral density or a probability density. But the
probabilistic terminology, by itself, adds little to our understanding of the elusive
concept of probability. It is simply a special case of the fact that a concept of
probability already defined on pointers can be transferred to the readings on them.
Moreover a system, as defined above, does not involve probabilities on its pointers.
Introducing probabilities on pointers would lead to the concept of a probabilistic
system. Whilst such a concept might be useful in some contexts, it is not the one
under study here. In the data framework of this section, the term ‘system’
conceptualizes the idea of a physical object as defined by the totality of ways in
which we might observe it, without regard to the relative frequencies with which we
might adopt the various observing procedures then in question. If probabilities were
introduced into the data framework to mimic real-world indeterminacy, then they
would enter as probabilities on states, not pointers.

Since a state spectrum is a list of counts it endows data analysis with a structure
which is similar to that of the probability calculus. The similarity lies not only in the
use of counting measures per se, but also in the practical motivation for their use. For
example, at the beginning of §6 we noted that the assessment of surrogate
performance involves not only how well a proposed surrogate depicts the suppressed
spectrum, the issue discussed in that section, but also how effective similar
condensation might be for other data-sets. Consider the case in which the state s is
classical, the observing pointer is ¢, ¢, ... ¢y, so that the actual data-set 4 = @s of
(9.9), and the other data-sets in mind are those which would arise had we observed
@4 in the same state s with a different pointer, say the n-ary pointer ¢ in @, where
I <n < N. Suppose that F’Qs|p is a good depiction of F,,, that is the information
deviance A[Fy, Fy,,] is relatively small and the percentage reduction in deviance is
correspondingly high. One could examine how effective depiction at level p is for the
other data sets in mind by working out how A[FD,F’Dlp] varies with D = ¢s and ¢
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running through @, the set of all n-ary pointers in @,. The deviance A[FD,F'Dlp] isa
function of the reading D = ¢s and the relative frequencies of those readings are given
by k| @, the restriction of the spectral density of s to @,. Thus, because of (9.13),
the relative frequency distribution of the deviance can be regarded as its sampling
density over independent, with replacement, ordered random samples from a
population of size N whose density is the suppressed data density f,. In other words
the question of how effective similar condensation might be for other data-sets can
be investigated by a bootstrap calculation. If we replace k, in that calculation by its
surrogate k,, and regard it as an estimate of an underlying population-based
likelihood, then we obtain the corresponding estimate of the sampling density of the
deviance.

Bootstrap calculation arises here, not as a substitute for a corresponding
probability calculation, but as a meaningful way of investigating, within a purely
data analytic framework, questions about the general usefulness of data condensation
procedures. This suggests, but does not prove, that probability need not play as great
a role in applied statistics as is sometimes supposed.

Nevertheless it is perhaps debatable whether such a bootstrap calculation
addresses the point at issue in the only meaningful way. It can be argued, for
example, that it is the magnitude of the change in the deviance A[FD,F'Dlp] when D is
perturbed that is of primary interest, and that the multiplicity of the pointers ¢ in
Q4 with gs = D is irrelevant. From that point of view it is also informative to
examine how the deviance changes as D runs uniformly through the n-ary readings
in the range of s, namely the support of k,|@,,.
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